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Abstract: Energy demand for power and telecommunication infrastructures has risen in recent years owing to 

technological advancements. The downtimes caused by an inadequate energy supply to critical infrastructure 

pose a great risk to daily activities. Hence, knowledge of future energy demands is pertinent to minimizing losses 

and operational costs, while ensuring consistent and reliable services. This article comprehensively reviews 

different models for predicting energy requirements by power and telecommunication infrastructure. The 

findings reveal that, while traditional models such as linear regression are simple to implement, models utilizing 

machine learning (ML) and deep learning (DL) techniques demonstrate superior performance in predicting 

energy consumption, yielding more precise outcomes. It has also shown that ML and DL models, including long 

short-term memory (LSTM), convolutional neural networks (CNN), Gated Recurrent Units (GRU), and hybrid 

architectures, are particularly effective for handling the complexities of long-term forecasting and adaptive 

systems. Thus, this current study offers valuable insights for academia, researchers, and energy personnel in 

network planning of the power and telecommunication industries to improve energy efficiency and cost 

management by analyzing historical data, identifying complex patterns, enabling real-time adaptations, and 

accurately forecasting their energy requirements. Researchers can also build upon the identified gaps to 

enhance the existing models and improve productivity. 
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I. Introduction 
Accurate energy demand predictions help optimize resource allocation, improve system reliability, and 

reduce operational costs [Ahmad et al. 2022; Granderson et al. 2023].As telecommunication networks expand, 

energy requirements and consumption management have become major concerns, thus increasing the need for 

robust forecasting models[Khan et al. 2021;Kumar et al. 2023].Although the population has titled towards 

mobile telecommunications, Williamset al. (2022) found that the energy requirements for the adoption of new 

technologies have been grossly overlooked.Tawn and Browell (2022)reviewed the different methods to forecast 

solar and wind power generation. According to the review, precise wind and solar forecasting increases the value 

of renewable energy by economically enhancing the dependability and viability of these resources. Efforts to 

ensure that future energy generation and demand are known beforehand can be observed in these studies [Tawn 

and Browell 2022].Hence, the focus should be on methods that can be used now and in future research. 

Energy forecasting has traditionally used conventional techniques, such as Box-Jenkins and 

exponential smoothing.However, these methods often struggle with nonlinear patterns and large-scale datasets, 

which are common in power systems and telecommunications [Rao et al. 2023].However, intelligent machine 

learning (ML) methods can model nonlinear interactions. These techniques, developed using artificial neural 

networks (ANNs), fuzzy logic, and support vector machines, outperform the traditional techniques[Ahmadi et 

al. 2023]. However, the use of deep learning (DL) for Short-Term and Long-Term Forecasting (STLF) is a 

further development of these techniques [Pin et al. 2020].DL and ML methods have proven to be effective 

instruments for energy forecasting in recent years [Paige et al. 2022].Since 2015, ML and DL have grown in 

prominence, according to Google Trends (2024)data. A trend depicting the rise in the popularity of DL and ML 

is shown in Figure 1, indicating that ML is more popularly utilized.Ahmadet al. (2021)provided a realistic 

http://www.ijerd.com/
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baseline that allowed researchers to compare their efforts in AI, ambitions, standard applications, challenges, 

and global roles in policymaking.  

In a study on load forecasting, Nti et al (2020) critically reviewed previous studies, with a focus on the 

factors that affect its accuracy. The study showed the prevalence of the adoption of Artificail Neural Networks 

(ANN) for load forecasting and the challenges that comes with time series analysis.However, the review paper 

by Alsharef et al (2022) discussed the nonlinearity and complexity of time-series data and how it can be 

addressed usingautoML and DL frameworks..Arsene and Parisio (2024) applied six new prediction models that 

work with the principle of Convolutional Neural Networks (CNN) on integrated electrical, heat, and gas 

network systems to understand the model's effectiveness in multi-energy systems.A. Yang, Li and X. Yang 

(2019) used least-squares support vector model (SVM) methods to perform commercial and industrial data 

experiments to test the accuracy of the method for energy forecasting.Other studies have all demonstrated the 

extensive use of ML and DL methods in energy forecasting [Chinnaraji and Ragupathy 2022;De Real, Dorado 

and Duran 2020;Huang et al. 2022;Li et al. 2022;Roman-Portabales, Lopes-Nores and Pazos-Arias  2021;Vu et 

al. 2021]. 

 

 
Figure 1: Percentage interest in ML and DL applications [Google Trends (2024)] 

 

Nevertheless, ML/DL approaches present challenges due to their more intricate and time-intensive 

training process compared to regression models [Aslam et al. 2021]. This is attributed to the fact that DL 

techniques necessitate substantial computing power and extensive data collection [Whang et al. 2023].In power 

systems and telecommunications infrastructure, accurate energy forecasting is crucial to ensure continued grid 

stability, effective load balancing, reduced downtime, and the management of integrated renewable energy 

sources.Hence, this study seeks to perform a comprehensive analysis of energy prediction methods for electrical 

power and telecommunications systems..The overarching research objectives include establishing the benefits of 

energy forecasting, ML, and DL methods  in energy forecasting, and the potential to improve energy efficiency. 

 

1.2 Methodology 

A systematic literature review is a guide to search for relevant literature, define the research gap 

therein, and investigate it.Consequently, the questions to which this study seeks answers are as follows: 

i. Is energy forecasting important? What benefits do ML and DL methods provide for energy forecasting? 

ii. Can barriers hinder the use of the ML and DL methods for energy forecasting? 

 

"Energy, Infrastructures, Machine-Learning, Forecasting, Telecommunications and Deep Learning" are 

the keywords with which the relevant academic literature were searched in Elsevier, Scopus, and Web of 

Science (WoS) academic databases. Relevant publications were screened by title, abstract, and date within a 10 

year period (2015-2024).Figure 2 illustrates the block diagram of the screening process employed in this study. 
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Figure 2: Block diagram of the methodology applied for literature search 

 

II. Previous Studies On Energy Forecasting Methods In Power And Telecommunication 

Infrastructures 
Elucidated in this section are some of the various approaches employed for energy forecasting in telecoms and 

power systems. 

 

2.1 Traditional energy forecasting techniques in power systems and telecommunications infrastructure. 

Several techniques have been utilized for energy forecasting in power and telecommunications 

systems.Traditional approaches like ARIMA and linear regression, and their shortcomings in modern 

applications are hereby presented. 

Aurnaet al. (2021)conducted time series analysis with the ARIMA and Holt-Winters model to forecast 

the periodic energy consumption of a study area. However, there is a need for more comprehensive comparisons 

between the various forecasting models and their applicability in different contexts.Ciulla and D'Amico 

(2019)on the other hand used the Multiple Linear Regression (MLR) to find correlations within 195 different 

scenarios. The insufficiency in the overall results prompted the authors to consider a statistical method designed 

to assist unskilled user in estimating building energy demand.While theproposed method is easy to use, MLR 

cannot treat nonlinear problems.In another study,Grzegorz (2016) implemented models that required one 

variable for short-term load forecasting that utilized a single variable, leveraging linear regression and the daily 

cycle patterns observed in load time series data.However, the local modelling approach, which is beneficial for 

reducing complexity, may not be generalized well across different periods or conditions.This could lead to 

poorer performance when forecasting situations that deviate from the historical patterns used to train the 

model.Barak and Sadegh (2016)in their studysolved the unavailability of the energy consumption dataset in Iran 

byusing a hybrid model-ARIMA (Auto Regressive Integrated Moving Average)–ANFIS (Adaptive Neuro Fuzzy 

Inference System) model.However, this method poses a significant risk to the reliability of the models.The study 

by De Oliveira and Cyrino Oliveira (2018) expanded the use of combined bagging and forecasting methods in 

the electric energy sector using a combination of ARIMA and exponential smoothing methods.However, the 

inability of the models to model nonlinear data still limits the effectiveness of the methods employed.However, 

the research conducted by Clements, Hurn, and Li (2016) demonstrated that a multiple-equation time-series 

model can rival or even surpass the performance of complex nonlinear and nonparametric forecasting 

models.However, their use in other regions with different load characteristics or market structures remains 

untested.Reliance on a linear model may limit the ability to capture intricate patterns in the data.In addition, the 

model assumed stationarity in the time series data, which differs from real-world scenarios in which load 

patterns can change due to various external factors.This assumption can lead to inaccurate forecasting 

results.However, Regmi and Pandey (2015) investigated the energy demand in Nepal's Information and 

Communication Technology (ICT) sector, focusing on the telecommunications sector using the ridge regression 

model.The model, although effective in avoiding multicollinearity, may not capture the full complexity of the 
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energy consumption patterns in the ICT sector.In a separate study by Ihedi-Okonkwo and Omosigho (2020) 

utilized a linear power consumption model to evaluate how the traffic load and instantaneous power 

consumption of the two base stations selected depend on each other.This is represented by a linear equation, 

where the power consumption is modelled as a linear combination of the traffic load and a random error 

term.However, the linear modelling method assumed a constant linear relationship between the traffic load and 

power consumption, which did not account for the nonlinear dynamics that can occur in real-world scenarios, 

such as sudden spikes in traffic or varying operational conditions that could lead to different power consumption 

patterns. 

This overview of various energy forecasting techniques in power systems and telecommunication 

infrastructure highlights traditional methods and their limitations.The reviewed studies show that energy 

demand grows alongside ICT development, but linear models often underestimate consumption by omitting 

factors such as environmental conditions or network configurations.While effective in reducing 

multicollinearity, ridge regression and logistic growth models also fall short in accurately predicting energy 

usage owing to limited data and the inability to model nonlinear behaviours.These challenges underscore the 

insufficiency of traditional models and the need for advanced techniques such as ML/DL, which can handle 

nonlinearity, adapt to changing conditions, and process more comprehensive data inputs.Table 1 summarizes the 

traditional methods used in this study. 

 

Table 1: Summary of traditional methods for energy forecasting 
Reference Case Study  Model Used in the Method Shortcomings 

Aurnaet al. (2021) Energy consumption 
forecasting for 

Ohio/Kentucky using time 

series analysis. 

ARIMA and Holt-Winters 
model. 

Lack of comprehensive comparisons 
with advanced techniques like ML. 

Ihedi-Okonkwo and 

Omosigho(2020) 

Evaluating power 

consumption of base stations 

based on traffic load using 
linear regression. 

Linear power consumption 

model. 

Fails to account for nonlinear 

dynamics and factors such as 

environmental conditions. 

Ciulla and D’Amico 

(2019) 

Building energy demand 

estimation using Multiple 
Linear Regression (MLR). 

Multiple Linear Regression 

(MLR). 

It cannot handle nonlinear problems 

and is limited to linear relationships. 

Grzegorz (2016) Short-term load forecasting 

using linear regression 
univariate models. 

Single variable models that 

are based on linear regression 
and daily cycles. 

Limited generalizability across 

different time periods and inability to 
model nonlinear relationships. 

Clements, Hurn and Li 

(2016) 

Energy load forecasting in 

Queensland, Australia  

Multiple equation time-series 

model. 

Assumes stationarity in time series 

data may not adapt to other regions or 
changing conditions. 

Regmi and Pandey 

(2015) 

Estimating energy 

consumption in Nepal's ICT 
sector with a ridge regression 

model. 

Ridge regression model and 

logistic growth model. 

Relies on publicly available indicators 

omits critical data, leading to 
underestimation. 

 

2.2 Application of advanced techniques in energy forecasting of power systems and telecommunication 

infrastructure 

Following the challenges and limitations of traditional techniques for energy forecasting, the need to 

adopt advanced methodologies that consider nonlinear dynamics and external factors that affect energy 

forecasting has been established. Advanced techniques such as the use of ANN, Random Forest, and k-nearest 

neighbor (kNN) in energy forecasting have been considered. Figure 3 shows the difference between the ML and 

DL processes, highlighting the exemption of the input feature extraction process in DL models [Ahmad et al. 

(2021)]. 
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Figure 3: Advanced techniques ML and DL procedures of energy forecasting[Ahmad et al. (2021)]

 

2.2.1 ML techniques in energy forecasting of power systems and telecommunication infrastructure 

Artificial Neural Networks (ANNs) have the capability to estimate a function based on provided input 

data and corresponding load data, which are utilized as training data [Khwaja, Naeem, and Venkatesh, 2020].An 

ANN is a mathematical model designed to emulate the structural and functional characteristics of biological 

neural networks.Chevez and Martini (2024) used ANN models to predict the short- and long-term forecasting 

hourly energy of a university building simultaneously. The models utilized parallel method of carrying out the 

prediction of both frequencies.Khwaja, Naeem and Venkatesh (2020) explored ensemble ML with focus bagging 

and boosting techniques to improve the accuracy of the selected model by testing real data from the New 

England Pool region.The model effectively enhanced the precision of short-term electricity load forecasts by 

leveraging ensemble learning with ANNs, offering improvements in both prediction accuracy and error 

reduction compared to conventional methods. 

Supply-demand balance is key to maintaining continuity of electrical energy supply to power systems 

[Impram, Varbak and Oral. 2020]. According to Mashud and Koprinska (2016), a crucial challenge in the design 

and management of power systems and energy markets is forecasting the electrical load.Their study introduced 

an innovative approach to short-term load forecasting by utilizing Advanced Wavelet Neural Networks 

(AWNN).The AWNN broke down the intricate electricity demand data into components with distinct 

frequencies that were predicted independently.The combination of wavelet decomposition and NNs proved to be 

a powerful tool for handling the complexity and nonlinearity inherent in electricity-load time-series 

data.Alarajet al. (2021) used a Random Forest regressor to predict the energy generated by solar photovoltaic 

plants based on weather factors.The model was implemented in the MATLAB Simulink environment and 

demonstrated effective prediction capabilities, thus indicating the utility of the Random Forest model in energy 

forecasting.Yagli, Yand and Srinivasan (2019)assessed the effectiveness of 68 ML algorithms for forecasting 

solar energy under different climate zones, sky conditions, and locations. It provides a comprehensive analysis 

of the model performance and finds significant variations in accuracy across different algorithms.  El 

Maghraouiet al. (2022) focused on using ANN, SVM, Decision Tree and Random Forest to predict energy usage 

in hotel buildings and concluded that the RF algorithm was the most reliable for predicting energy usage in such 

environments.Laayati, Bouzi and Chebak (2022) proposed a smart energy management system to improve 

energy efficiency in open-pit mines using ML.This study developed a monitoring system that optimized the 

energy consumption and supported predictive maintenance. 

Dalal et al. (2023) proposed a hybrid forecasting model called TLIA (Transferring long short-term 

memory into an artificial neural network (TLIA) for energy forecasting.The model integrates LSTM and ANN, 

leveraging transfer learning to enhance performance by preventing backpropagation modifications in the LSTM 

layers while updating the ANN layers.The model tested on six datasets significantly outperformed the other 

seven datasets, thus making it highly efficient for volatile energy market forecasting.Consequently, Lee and Cho 

(2022) evaluated SARIMAX with SVR, LSTM, and ANN models for peak load forecasting in Korea, and 

demonstrated that hybrid models, particularly those combining time series and ML, achieved superior 

performance in energy forecasting compared to individual models.Alhendi et al. (2023) focused on short-term 

load and price forecasting using an Artificial Neural Network (ANN) integrated with an Enhanced Markov 



Energy Forecasting Models for Power and Telecommunication Infrastructures: A Systematic Review 

83 

Chain (ANN-MC) model.he ANN-MC model demonstrated superior performance compared to conventional 

ANN models, achieving better results across various metrics, including Mean Absolute Percentage Error 

(MAPE) and Mean Prediction Error (MPE).Although the ANN-MC model showed a higher computational time 

and a greater risk index than the ANN model, it consistently provided more accurate forecasts.Dinesh, Makonin 

and Bajic (2019) applied ANNs to forecast power usage in individual houses using non-intrusive load 

monitoring.The model demonstrated significant accuracy in capturing the characteristics of the houses selected 

for the study. In contrast, Baba (2022) evaluated a self-tuned ANN-based adaptable predictor using two practical 

examples, incorporating the k-means clustering algorithm and a genetic algorithm to enhance the performance 

of selected local solar units. 

Falkenberg et al. (2018)in their study addressed the energy consumption challengein mobile 

communication systems like LTE and 5G by introducing a novel data-driven model that predicted uplink TX-

power using ML techniques.The RF model is among the ML techniques used to analyze the relationship 

between passive indicators, such as velocity, data rate, and TX-power.The model was trained using empirical 

data from driving tests conducted in a public cellular network. The Random Forest model outperformed the 

other methods, achieving a mean average error (MAE) of 3.166 dB.The accuracy of the model remained stable 

even when a limited set of features was used, indicating its robustness for long-term power 

estimations.AlShafeey and Csaki(2024) described how data from a 2 MW grid-connected wind turbine were 

used to train Artificial Neural Networks (ANN), Support Vector Machines (SVM), and K-Nearest Neighbors (K-

NN).The hybrid model showed better prediction accuracy for both short- and long-term energy estimates.Table 

2 summarizes the papers reviewed on ML techniques for energy forecasting. 

 

Table 2: Summary of MLmodels  for energy forecasting 
References Case Study Findings Model  Prediction 

Frequency 

Industry 

AlShafeey and 

Csaki(2024) 

Wind energy 

forecasting using 
hybrid ANN, SVM, 

and K-NN models 

The hybrid model 

showed superior 
performance in both 

short- and long-term 

wind energy 
forecasting 

Hybrid ANN, 

SVM, and K-NN 

Short-term and 

long-term 

Power Systems 

Alhendi et al. 

(2023) 
 

 
 

  

Short-term load and 

price forecasting for 
New England 

ANN-MC model 

outperformed 
conventional ANN 

models in load 
forecasting 

ANN with 

Enhanced Markov 
Chain 

Short-term Power Systems 

Dalal et al. (2023) Hybrid forecasting for 
volatile energy markets 

TLIA model 
outperformed other 

models, improving 

accuracy and reducing 
processing time 

TLIA (Hybrid of 
LSTM and ANN) 

Not specified Power Systems 

El Maghraouiet 

al. (2022) 

Energy consumption 

prediction in hotel 

buildings 

Random Forest was the 

most reliable for 

predicting energy 

usage in hotel 

environments. 

Random Forest Not specified  Power 

Systems 

Laayati, Bouzi 

and Chebak 
(2022) 

Energy management in 

open-pit mines 

A smart energy 

management system 
optimises energy 

consumption. 

ML (not specified) Not specified Power Systems 

Lee and Cho 
(2022) 

Peak load forecasting 
in Korea 

Hybrid models 
combining SARIMAX 

with SVR, LSTM, and 

ANN performed best 

SARIMAX, SVR, 
LSTM, and ANN 

(Hybrid) 

Peak load (not 
specified) 

Power Systems 

Baba (2022) ANN-based adaptable 

predictor for energy 

forecasting 

Self-tuning ANN-

based model improved 

accuracy through 
Hebbian law and 

clustering algorithms 

ANN with a self-

tuning mechanism 

Not specified Power Systems 

Khwaja et al. 

(2020) 

Short-term electricity 

load forecasting 

(STLF) in New 
England 

Bag-BoostNN 

outperformed single 

ANNs, reducing errors 
and improving 

prediction accuracy 

Bag-BoostNN 

(Ensemble of 

ANNs) 

Short-term Power Systems 

Yagli, Yand and 
Srinivasan (2019) 

Solar energy 
forecasting across 

different climate zones 

Significant variation in 
accuracy across 

algorithms, 

highlighting model 

Various ML 
algorithms 

Not specified  Power 
Systems 
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importance. 

Dinesh, Makonin 
and Bajic (2019) 

Power usage 
forecasting in 

individual homes 

ANNs accurately 
forecasted power usage 

in homes using non-

intrusive load 
monitoring. 

Artificial Neural 
Networks (ANN) 

Not specified Power Systems 

Yuan et al. (2018) Seasonal hourly 

electricity consumption 

in Japan 

High predictive 

accuracy across 

seasons with R² values 
above 0.95 

Feedforward ANN Seasonal hourly Power Systems 

      

 
Falkenberg et al. 

(2018) 

Energy consumption 

prediction in LTE/5G 
mobile systems 

Random Forest achieved a 

mean average error (MAE) 
of 3.166 dB in predicting 

uplink TX-power 

Random Forest Long-term Telecommunic

ation 

Mashud and 
Koprinska(2016) 

Very short-term load 
forecasting in Australia 

and Spain 

AWNN model showed 
superior performance in 

multi-step forecasting 

compared to ARIMA 

Advanced Wavelet 
Neural Network 

(AWNN) 

Very short-
term 

Power 
Systems 

 

2.2.2 Deep learning techniques for energy forecasting in electrical power systems and telecommunication 

infrastructure 

Because traditional ANNs have been around for more than a decade and are well established, they have 

been widely reported in the literature for energy forecasting.However, deep ANN architectures have since 

emerged, providing fresh insights and occasionally improving the performance.This review considered the use 

of Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs) (such as Long Short-Term 

Memory (LSTM) and gated recurrent units (GRU)), Auto-encoders, Stacked Auto-encoders (SAEs), and 

Stacked Denoising Auto-encoders (SDAEs) in energy forecasting.CNNs are designed to process two-

dimensional data and are particularly effective for feature extraction.These are composed of completely linked 

layers, pooling layers, convolution layers, and activation functions.Variants include 1D-CNN and 2D-CNN, 

which are based on the structure of the input data [Kiranyazet al.,2021].Consequently, Rafi, Deeba and Hossain 

(2021) used an encoder-decoder architecture that combined a CNN and an LSTM.The CNN block processes the 

input data, which are then flattened and used as input for the LSTM unit, followed by a dense layer for 

output.The model was noted for its performance in handling long-sequence time-series data and achieving lower 

error metrics compared to other models.Aurangzeb et al. (2021)in their study used CNN layers arranged in a 

pyramidal architecture for electrical load forecasting. Pyramidal architecture typically allows for hierarchical 

feature extraction, with lower layers identifying fundamental patterns and higher layers capturing more abstract 

representations. In this context, energy customers were grouped into clusters based on their consumption 

patterns using the DBSCAN (Density-Based Spatial Clustering of Applications with Noise) algorithm. 

Shen et al. (2021)proposed a two-dimensional CNNto extract features from the matrix in the load 

forecasting part of the study. After learning the reshaped time-series features, the prediction was completed by 

combining the temporal convolutional network (TCN) with a fully connected layer.The Eastern Electricity 

Market in Texas validated the model's performance.Another study reported by Andriopoulos et al. (2021) found 

that CNNs perform more accurately when historical data are scarce.Comparing CNN-based models to LSTM 

algorithms, the study demonstrated that they offer a competitive substitute for STLF problems by taking 

advantage of the temporal locality of load time series, akin to how image processing uses spatial locality.A novel 

probabilistic load forecasting technique based on CNNs was developed in the study [Huang, Li, and Zhu 

(2020)].The method proposed to construct a discrete load probability distribution (LPD) for training samples is 

called load-range discretization (LRD).Most of the actual loads in the case study fell within the 70–90% 

confidence level range for particular prediction intervals, indicating the efficacy of the suggested 

approach.RNNs can retain information throughout the time steps and are well-suited for sequential data.Because 

they can identify temporal connections in data, they are very helpful for time-series forecasting [Wang et al. 

(2020)].Long Short-Term Memory (LSTM), a type of Recurrent Neural Network (RNN), was developed to 

address the vanishing gradient problem, allowing it to effectively learn and retain long-term dependencies.. They 

work well for identifying patterns and trends in time series data. Although they have fewer parameters and 

simpler architecture, GRUs resemble LSTMs. They are frequently employed for load forecasting and can assist 

in capturing dependencies in sequential data [Abumohsen, Owda A and Owda M. (2023)]. 

Farsi et al. (2021) proposed a novel model combining Long Short-Term Memory (LSTM) and 

Convolutional Neural Network (CNN) architectures to assess their effectiveness in short-term load forecasting 

(STLF). The model was evaluated using two datasets: hourly electricity consumption data from Malaysia and 
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daily load consumption data from Germany.Previous consumption data are parameters for predicting the load 

one step ahead.The architecture of the model features two distinct paths: the CNN path is responsible for 

extracting features from the input data, whereas the LSTM path captures long-term dependencies.The outputs 

from these two paths are then merged, and a fully connected layer along with an additional LSTM layer is 

employed to process the combined output and generate the final load predictions.Altunkaya and Yilmaz (2020) 

estimated hourly load demand by analyzing the past 24 h of consumption data alongside weather variables, 

including temperature and humidity, in Kenya from 2016 to 2020.Deep learning algorithms, specifically 

Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), and Gated Recurrent Units (GRU), 

were employed to develop the forecasting models, among which the RNN model emerged as the most effective 

when examined based on the Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean 

Absolute Error (MAE).Xuan et al. (2021) presented a Convolutional GRU (CGRU) hybrid network (multitask 

learning with homoscedastic uncertainty) HUMTL and an ensemble approach based on Gradient Boosting 

Regression Trees (GBRT), which were employed to forecast various types of loads, leading to the development 

of a multi-energy load prediction model for Renewable Integrated Energy Systems (RIES).It incorporates three 

Gated Recurrent Units (GRUs) with distinct structures, enabling the model to learn different energy features to 

varying extents, thus fulfilling the prediction requirements for diverse load types.HUMTL leveraged 

homoscedastic uncertainty to enhance the optimization of prediction tasks across these load types.Compared to 

other forecasting models, the proposed HUMTL-CGRUG model demonstrated superior capability in 

approximating the evolution patterns of various load types, further exploring the temporal and spatial 

correlations among multi-energy loads, and delving deeper into the interconnections between different energy 

systems. 

The study reported in Gurses-Tran, Flamme and Monti (2020) introduced a Recurrent Neural Network 

(RNN) designed to predict day-ahead time-series and forecast intervals for residual loads by utilizing load 

profiles and meteorological variables.The model was trained and validated by using data sourced from a 

regional distribution system in southern Sweden.Two recently created stochastic models, the Factored 

Conditional Restricted Boltzmann Machine (FCRBM) and the Conditional Restricted Boltzmann Machine 

(CRBM), were examined byMocann et al. (2016) for the purpose of time-series prediction of energy 

consumption.An individual residential customer’s one-minute resolution electric power usage data for nearly 

four yearsserved as the benchmark dataset for the assessment.The findings demonstrated that FCRBM 

outperformed ANN, Support Vector Machine (SVM), Recurrent Neural Networks (RNN), and CRBM for the 

energy prediction problem resolved in this study.AEs are used for the unsupervised learning of efficient 

coding.They consist of an encoder that compresses the input and decoder that reconstructs it.Variants include 

stacked autoencoders (SAEs) and stacked denoising autoencoders (SDAEs), which enhance the robustness of 

the model by adding noise during training [Jahangir et al. (2020)].SAEs are composed of multiple layers of AEs 

stacked on top of each other, allowing deeper feature extraction and representation learning.SDAEs are a type of 

SAE that add noise to the input data during training, which helps the model learn more robust features and 

improves generalization. 

The research reported by Peng et al. (2019) proposed a hybrid model for electrical load forecasting 

combining Stacked Autoencoders (SAE) and Extreme Learning Machines (ELM) to enhance prediction 

accuracy.The SAE extracted deep features from the time-series data layer by layer, whereas the ELM, known for 

its fast training and high-performance approximation, was applied to each layer's output.The model then 

integrates the outputs of these ELMs by using linear regression to generate the final prediction.The approach 

was tested on two real-world datasets, and the results were compared to those of various models, including SAE, 

ELM, Backpropagation Neural Networks (BPNN), Multiple Linear Regression (MLR), and Support Vector 

Regression (SVR).The hybrid model consistently outperformed the others, achieving lower error rates across 

metrics, such as Mean Absolute Error (MAE) and Root Mean Square Error (RMSE).The hybrid model 

demonstrated better accuracy and robustness in predicting electrical loads, highlighting the effectiveness of 

combining deep and fast learning algorithms for complex time-series data.To improve the prediction accuracy of 

power load forecasting in smart grids, Ke et al. (2019) presented a short-term electrical load forecasting 

technique that combines SAE and GRU neural networks.A multilayer GRU model was used to forecast 

upcoming electricity loads.By obtaining fewer prediction errors and improved precision in a short process time, 

the experimental findings showed that the SAE-GRU model significantly outperformed Support Vector 

Machines (SVM) and standard GRU.This study demonstrated the potential of the model for useful applications 

in real-time power supply management and highlighted its efficiency and robustness. 

Meanwhile, in a study by Sujan et al. (2022), Random Forest, Long Short-Term Memory (LSTM), 

Deep Neural Networks (DNNs), and Evolutionary Trees were employed as base models in an ensemble-based 

approach. Two distinct ensemble models were proposed, combining the predictions of the base models using 

Gradient Boosting and Extreme Gradient Boosting (XGB). The ensemble models were evaluated using a 

standard electricity consumption dataset collected at regular intervals over a nine-year period.The experimental 
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results showed that the proposed ensemble model significantly reduced the training time of the second layer 

within the ensemble framework when compared with the standard method, with even better accuracy.This study 

recorded a reduction in the RMSE by an approximate value of 39%.Somu, Raman and Ramamrithan (2021) 

presented a k-CNN-LSTM hybrid model, which was designed to perform cluster analysis of energy usage 

patterns and other complex features with nonlinear relationships that affect energy usage and long-term 

dependencies. Upon testing, k-CNN-LSTM outperformed the other variants of standard energy demand forecast 

models considering well-known quality metrics, demonstrating its suitability for energy consumption forecast 

problems.Wang et al. (2019)in their research categorised deep learning models into four main types namely deep 

belief networks (DBN), stacked auto-encoders (SAE), deep recurrent neural networks (DRNN), and other 

models like convolutional neural networks (CNN) and extreme learning machines (ELM). The study also 

discussed data preprocessing techniques such as wavelet decomposition and empirical mode decomposition, 

which help improve the accuracy of these models while Rahman, Srikumar and Smith (2018) developed and 

optimised novel deep recurrent neural network (RNN) models and analysed the performance of the model for 

distinct types of electricity consumption patterns. Subsequently, imputation was performed on a dataset of 

electricity usage that included segments with missing values using deep neural networks.The proposed RNN 

sequence-to-sequence models predicted the load profiles of commercial buildings with a smaller relative error 

than a traditional multilayered perceptron neural network.In addition, the proposed model did not yield any 

additional accuracy when compared to the multilayered perceptron model for estimating the aggregate power 

usage in residential buildings.The SDAE was utilized for short-term electric load forecasting in a different 

investigation [Liu, Peyun and Zyu (2019)].Pre-training was performed layer-wise in the SDAE approach, which 

helped prevent problems, such as gradient vanishing and overfitting. Simple Auto-Encoders (AE) and 

conventional Back Propagation (BP) neural networks were compared with SDAE's performance. Significant 

progress was made, as evidenced by the prediction error being reduced from 3.66% (BP) and 6.16% (AE) to 

2.88% with SDAE. This illustrates how SDAE may effectively capture nonlinear interactions and enhance 

forecast accuracy in contexts with complicated data. 

In the research study reported by Kim, Lee and Hwangbo (2024), the authors tested the use of the 

variational auto-encoder (VAE) method to create multiple feasible samples and utilized Bidirectional Long 

Short-Term Memory (Bi-LSTM) networks to build a demand forecasting model for renewable electricity 

demand. Using RMSE, MAE, MAPE, and R-square evaluation metrics, the suggested forecasting model was 

compared to GRU, LSTM, ANN, DNN, SVR, and ARIMA. The findings demonstrated that the VAE-Bi-LSTM-

based forecasting model performed better than the other models, with average decreases in RMSE, MAE, and 

MAPE values of 33.7%, 41.4%, and 39%, respectively. Furthermore, among RNN-based forecasting models, the 

VAE-Bi-LSTM model was identified as the most optimal network based on information criteria results. Finally, 

Aslam et al. (2021) carried out a literature review on forecasting renewable energy generation and usage using 

DL models. Thesereviewed studies demonstrated the application of DL models in renewable energy generation 

and usage forecastingfrom various perspectives and horizons[Aamasyali and El-Gohary (2018);Fallah et al. 

(2018);Jha et al. (2017);Mohanty et al. (2017);Shamshurband, Rabczuk and Chan (2019);Wei et al. (2018)]. 

Table 3 shows the summary of the papers reviewed on the use of deep learning techniques for energy 

forecasting. 

 

Table 3: Summary of deep learning models for energy forecasting 
References Case Study Findings Model Type Frequency 

Kim, Lee and 
Hwangbo (2024) 

Renewable energy in 
South Korea 

the forecasting model is the most 
effective network among RNN-

based models. 

VAE-BiLSTM Not specified 

Sujan et al. (2022) Electricity consumption 
dataset (500,000 values 

over 9 years) 

XGB-based ensemble model 
reduced training time by a factor of 

10, with a 39% reduction in RMSE 

Stacking Ensemble 
Model (Random 

Forest, LSTM, Deep 

Neural Networks, 
Evolutionary Trees, 

XGB) 

Short-term 

Rafi, Deeba and 
Hossain(2021) 

Not specified Lower error metrics compared to 
other models 

Encoder-Decoder 
(CNN-LSTM) 

Short term 

Somu, Raman and 

Ramamrithan (2021) 

Real-time building 

energy consumption data 

(IIT-Bombay, India) 

k-CNN-LSTM provided an 

accurate energy demand forecast, 

capturing spatiotemporal 
dependencies 

k-CNN-LSTM Not specified 

Shen et al. (2021) Eastern Electricity 

Market of Texas 

Model performance verified 2D-CNN with 

Temporal 
Convolutional 

Network (TCN) 

Unspecified 
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Farsi et al. (2021) Malaysia and Germany 

electricity consumption 

Effective in short-term load 

forecasting 

Parallel LSTM-CNN 

Network (PLCNet) 

Short-term 

Xuan et al. (2021) Renewable Integrated 
Energy Systems 

Superior capability in 
approximating load patterns 

Convolutional GRU 
(CGRU) with 

HUMTL 

Not specified 

Andriopoulos et al. 
(2021) 

Not specified CNNs achieve better accuracy with 
limited historical data 

CNN Short-term 

Huang, Li and Zhu 

(2020) 

Not specified Effective in generating Load 

Probability Distribution 

CNN with Load 

Range Discretization 

Unspecified 

Altunkaya and 

Yilmaz(2020) 

Konya, Turkey (2016-

2020) 

RNN model most effective based 

on error metrics 

RNN, LSTM, GRU Hourly 

Gurses-Tran, 
Flamme and Monti 

(2020) 

Southern Sweden 
regional distribution 

system 

Effective in predicting day-ahead 
residual loads 

RNN Day-ahead 

Peng et al. (2019) Two real-world datasets 
(unspecified) 

Outperformed other models with 
lower error rates 

Hybrid SAE-ELM Not specified 

Ke et al. (2019) Smart grid data Outperformed traditional 

forecasting models 

Hybrid SAE-GRU Short-term 

Liu, Peijun and Zyu 

(2019) 

Not specified Reduced prediction error 

compared to BP and AE. 

Stacked Denoising 

Auto-Encoder 
(SDAE) 

Short-term 

Rahman, Srikumar 

and Smith (2018) 

electricity usage for the 

Public Safety Building 
in Salt Lake City, Utah 

The models demonstrate lower 

relative error compared to 
traditional multi-layered 

perceptron neural networks in 

predictingcommercial building's 
load profiles 

RNN hourly 

Wang et al. (2016) Not specified Outperformed standalone LSTM-

RNN model 

LSTM-RNN with time 

correlation 
modification 

Day-ahead 

 

III. Comparative Analysis Of ML And DL Techniques 
Machine Learning (ML) and deep learning (DL) techniques offer robust alternatives to conventional 

methods, especially for nonlinear data, complex systems, and long-term forecasting. These models handle large 

datasets better and can capture patterns in energy consumption, particularly in dynamic environments such as 

telecommunications infrastructures and power grids.ML techniques reviewed in this study demonstrated 

significant strength in modelling complex nonlinear relationships as Random Forests (RF) and Support Vector 

Machines (SVM) have been shown to model complex nonlinear relationships common in modern energy 

systems. The different case studies presented in the papers reviewed showed how ML models excel at 

processing large datasets with many features, making them ideal for energy demand forecasting in both power 

systems and telecommunications infrastructure. As stated in the current review study, ANN models can adapt to 

changes in external factors that affect energy demand, improving their predictive accuracy over time as new data 

becomes available [Roman-Portabales, Lopes-Nores and Pazos-Arias(2021)]. However, these models require 

significant data preprocessing and longer training times than existing methods. Unlike traditional models, ML 

models such as RF are ensembles of decision trees,with their complexity increasing as the number of trees 

growsand their interaction, making it hard to interpret individual decisions.Reviewed studies [Falkenberg et al. 

(2018);Khwaja, Naeem and Venkatesh (2020)] showed the introduction of Bag-BoostNN, an ensemble of 

Artificial Neural Networks (ANNs), which demonstrated higher accuracy in short-term electricity load 

forecasting compared to conventional methods and Random Forest to predict uplink transmission power in 

mobile communication systems. 

Additionally, deep learning models, such as Long Short-Term Memory (LSTM) and Gated Recurrent 

Units (GRU), demonstrated exceptional capability in processing sequential data and capturing long-term 

dependencies in time series, rendering them highly efficient for energy demand forecasting.Studies reviewed in 

this paper showed case studies where these models were either used aloneor combined and their performance in 

the selected application areas indicated.CNNs are powerful in extracting features from multi-dimensional data, 

which is useful in energy systems where input data is complex.DL models demonstrated their scalability and 

ability to handle massive datasets, providing better results in systems with large amounts of data, such as smart 

grids and IoT-based telecommunication networks. However, DL models are computationally intensive and 

require significant processing power and very large datasets to perform effectively. These models are prone to 

overfitting if not properly regularisedparticularly when there is insufficient data to train them effectively. Farsi et 

al. (2021) demonstrated the effectiveness of a hybrid LSTM-CNN model in short-term load forecasting for 

electricity consumption in Malaysia and Germany, outperforming ML models just as Xuan et al. (2021) used 

Convolutional GRU (CGRU) to improve load forecasting accuracy in renewable integrated energy systems, 
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leveraging both temporal and spatial correlations.Table  4 shows the summary of the comparative analysis 

carried out on the different methods reviewed in this current study. 

 

Table 4 :Overview of the comparative analysis conductedon the different hybrid methods 
Method Model Types Strength Limitations Application 

Traditional methods ARIMA, Linear 

regression, Holt-Winters 

model 

Simple, easy to 

implement and interpret 

Limited scalability and 

struggle with nonlinear 

data 

Short-term forecasting 

with relatively stable 

data 
ML  models Random Forest, SVM, k-

NN, ANN, 

Can handle nonlinear 

data, adaptable to 

changing external factors 

Requires more 

computational resources 

and can be hard to 
interpret 

Medium-term 

forecasting with 

complex, nonlinear 
relationships 

Deep Learning 

models 

LSTM, SAE, CNN, 

GRU 

It can capture long-term 

factors and is effective 
with very large data. 

Computationally 

expensive and also has a 
high risk of overfitting 

Large-scale and long-

term forecasting, 
especially with dynamic 

datasets 

 

It can be deduced from the comparative analysis that while traditional models are being replaced by 

more advanced techniques,such as the ML and DL models used in the reviewed studies, there are severally 

challenges comfronting the full implementation. Some of these lows and suggested way out are discussed in the 

ensuing section. 

 

IV. Challenges In The Application Of ML And DL Models For Energy Forecasting In Power 

And Telecommunications Infrastructures 
Despite the numerous benefits of ML and DL over the traditional approaches in the prediction and 

analysis of power and telecommunication systems, there are several setbacks facing the implementation. One of 

the major challenges in applying ML and DL models to energy forecasting is the lackof consistent and high-

quality data. Power and telecommunications infrastructure often lacks sufficient data granularity, particularly in 

underdeveloped regions, such as Africa, making it difficult to capture intricate patterns in energy usage. 

Variations in data formats and standards across different systems and regions further complicate data integration, 

whereas missing or noisy data can significantly degrade the model performance and accuracy [Forootan et al. 

(2022)]. Additionally, the dynamic nature of telecommunications energy demand, influenced by fluctuating 

traffic loads, weather, and operational conditions, introduces complexities that are not easily captured by 

traditional and local data preprocessing techniques. Data privacy concerns, especially in telecommunications, 

also hinder data sharing because energy data are often intertwined with sensitive operational information [Liu et 

al. (2021)]. Therefore, to address data-related challenges, it is essential to establish robust data-collection and 

standardization practices. Integrating IoT devices and sensors into power and telecommunications infrastructure 

can facilitate continuous and reliable data collection). Synthetic data generation techniques such as Generative 

Adversarial Networks (GANs) can be employed to augment training datasets, particularly when real data are 

scarce [Arruda et al. (2022)]. Additionally, federated learning and encryption methods can ensure data privacy 

while enabling collaborative modeling efforts across organizations [Qi et al. (2021)]. 

Also, the inherent complexity of energy systems poses challenges in the development of accurate ML 

and DL models. Telecommunications infrastructures experience dynamic energy consumption owing to 

fluctuating user demand, network maintenance schedules, and variable traffic loads, which are difficult to model 

accurately. For power systems, the high dimensionality of data, encompassing numerous interdependencies such 

as generation, transmission, and the end-user side distribution, often leads to overfitting, particularly when the 

training data are limited or biased [Agular and Antonio (2021)]. Furthermore, although powerful, DL models are 

frequently perceived as “black boxes,” making it difficult for domain experts to interpret their predictions or 

validate their reliability [Chen et al. (2023)]. The development of hybrid models that combine ML/DL 

approaches with traditional domain-specific physical models can improve accuracy by capturing both statistical 

patterns and system dynamics [Raahman et al. (2021)]. Transfer learning, which leverages pretrained models, 

can enhance efficiency by minimizing the requirement for extensive training on new datasets [Tan et al. (2018)]. 

Explainable AI (XAI) techniques, such as Shapley Additive Explanations (SHAP) and Local Interpretable 

Model-agnostic Explanations (LIME), can improve model interpretability, enabling domain experts to validate 

predictions and build trust in AI solutions  

Furthermore, training and deploying ML and DL models for energy forecasting requires substantial 

computational resources, particularly when applied to large-scale power grids or real-time telecommunications 

networks. DL models, with their deep architectures, require significant processing power and memory, leading 

to high training times and costs. For real-time applications, such as energy optimization in telecommunication 

base stations, latency is a critical issue. Many existing models fail to meet the demands of real-time decision-

making, which is important for maintaining operational efficiency and reliability [Bousdekis et al. 
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(2021)].Optimizing the computational efficiency is critical for real-time applications. Edge computing, which 

processes data closer to the source, can reduce the latency and bandwidth requirements Lightweight DL 

architectures, such as MobileNet, or model compression techniques, can further enhance efficiency. Employing 

cloud-based platforms offers flexible and economical solutions for training and deploying ML/DL models. 

In addition, the incorporation of ML and DL models into existing energy management systems is 

another significant hurdle. Most power and telecommunications infrastructure is built on legacy systems that are 

not designed to interface with modern AI-based solutions [Saravanan et al. (2024)]. Ensuring the interoperability 

between these systems requires significant customization, which can be both costly and time-consuming. 

Furthermore, the lack of standardized frameworks for implementing AI solutions in these domains creates 

barriers to their widespread adoption.To overcome integration challenges, ML and DL models should be 

designed as modular systems that can easily interface with the existing energy management frameworks. The 

development of standardized APIs and protocols can facilitate seamless communication between legacy systems 

and AI solutions. Pilot projects can be used to demonstrate the feasibility and benefits of integration before full-

scale deployment, thus encouraging stakeholder buy-in. 

Furthermore, energy-forecasting models often depend on historical data to forecast future consumption 

patterns. However, these patterns are influenced by external factors such as weather changes, policy shifts, and 

unexpected events. In power systems, renewable energy sources like solar and wind are highly weather-

dependent, introducing variability that must be accounted for in forecasting models [Bloomfield et al. (2022)]. 

Similarly, telecommunications infrastructure experiences energy demand spikes during adverse weather 

conditions or emergencies, which are difficult to predict accurately. Policy and regulatory constraints also 

impact the deployment of AI solutions, as they may require adherence to local guidelines that are not universally 

applicable [Birol (2022)].Building adaptive models that update in real time using new data can help address the 

impact of changing external factors. Incorporating exogenous variables such as weather conditions, economic 

indicators, and policy changes into forecasting models can enhance their robustness and accuracy. Dynamic 

modeling approaches, such as reinforcement learning, can also be explored to account for system variability and 

uncertainties. 

Lastly, a critical gap in the effective application of ML and DL models for energy forecasting is the 

inadequacy of domain expertise among the AI developers. Without a deep understanding of the operational 

nuances of power and telecommunications systems, models may fail to capture key variables or 

interdependencies, leading to suboptimal performance [Saravanan et al. (2024)]. This disconnection between AI 

development and domain knowledge often results in solutions that are not fully aligned with the practical 

requirements of the field.Collaboration among AI developers, energy engineers, and telecommunications 

specialists is crucial for bridging the gap between technology and domain expertise. Capacity-building 

programs, including workshops and training sessions, can equip stakeholders with the skills required to 

understand and effectively implement ML/DL solutions. Cross-disciplinary research initiatives can also drive 

innovation by combining insights from various fields. 

Engaging regulatory bodies to align AI solutions with local guidelines can facilitate smoother 

implementation. Developing policies that support innovation, while ensuring compliance with safety and 

operational standards, is essential. Open data initiatives and benchmarking efforts can further promote 

transparency and encourage the development of best practices. 

Investing in research and development is critical for advancing ML and DL applications in energy 

forecasting. Custom solutions tailored to the unique needs of power and telecommunications infrastructure can 

address specific challenges and unlock new opportunities. Open-source platforms can foster collaboration and 

accelerate the development of innovative solutions. 

 

V. Conclusion 
This paper has presented a review of traditional, ML and DL models that are used to tackle the 

problems in energy forecasting for different case studies.Academic literature from2015 to 2024  extracted from 

popular databases were used to retrieve related research articles that utilsed ML approaches such as Artificial 

Neural Networks, Random Forest, Support Vector Mechanism, k-nearest neighbour (k-NN) and DL approaches 

including Convolutional Neural Networks, Recurrent Neural Networks, long short-term Memory, Gated 

Recurrent Unit, Auto-encoders, Stacked Auto-encoders and Stacked Denoising Auto-encoders for energy 

forecasting. This current review has demonstrated that ML and DL models, including LSTM, CNN, GRU, and 

hybrid architectures are well-suited for handling the complexities of long-term forecasting and adaptive systems, 

as they outperform traditional methods in various case studies, such as the PLCNet model and the Bag-BoostNN 

model. Given the benefits and increased interest in application of energy forecasting, this review will serve as a 

source reference for researchers and engineers interested in load forecasting based on traditional, ML and deep 

learning methods to guide them in their tasks towards an informed decision.Consequently, our findings offer 

valuable insights for both academia and industry engineers in the power and telecommunication space on how to 
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advance the implementation of ML and DL models for improved productivity. Researchers can build upon the 

identified gapsin existing systems and modelsand explore unsupervised learning, hybrid models for energy 

forecasting studies and applications. For industry practitioners in the telecommunication sector where energy 

demands continue to escalate with the advancements in 5G and other wireless technologies,implementing these 

advanced models can lead to improved energy management and cost savings. 

 

VI. Recommendation For Future Directions 
Energy forecasting continues to rapidly evolve, driven by several emerging trends with significant 

potential to impact future research and applications. Integrating access to real-time data streams from smart 

grids and telecommunication networks can create new possibilities for responsive energy forecasting. For 

instance, Edge AI enables machine learning models to operate at the edge of networks, offering near real-time 

forecasting with reduced latency. This is particularly crucial for telecommunication infrastructures, where 

energy demands fluctuate unpredictably due to dynamic traffic loads. Falkenberg et al. (2018) demonstrated 

how edge computing enhances energy optimization in such contexts, especially in areas with limited 

computational resources. Future research could explore lightweight and robust deep learning models optimized 

for edge devices, such as IoT nodes and mobile base stations. 

Federated Learning (FL) technology also presents a promising avenue, enabling decentralized model 

training across multiple devices. This approach enhances privacy, reduces centralized data requirements, and 

allows for more personalized and context-aware predictions. Although FL integration in energy forecasting 

remains in its early stages, its potential to revolutionize smart grid and telecommunication applications warrants 

further exploration. 

Hybrid models, which combine the strengths of machine learning (ML) and deep learning (DL) 

techniques, are gaining traction. For example, the PLCNet model by Farsi et al. (2021) leveraged CNN for 

feature extraction and LSTM for sequential data handling, achieving improved forecasting performance. 

Similarly, models integrating physical-based and data-driven approaches can better handle the variability of 

renewable energy sources, as seen with physics-informed neural networks (PINNs). Meanwhile, unsupervised 

learning techniques provides additional opportunities, particularly in contexts with scarce labeled data. 

Techniques such as autoencoders can uncover complex data features, improving adaptive forecasting for sectors 

like 5G and IoT-enabled networks [Liu, Peijun and Zyu (2019)]. Expanding these methods to handle adaptive 

forecasting across diverse systems, including renewable-integrated grids is considered a promising direction. 

In addition, emerging technologies, such as Explainable AI (XAI) and Quantum Machine Learning 

(QML) are  poised to reshape the field. XAI enhances transparency, making energy forecasting models more 

interpretable for regulatory and operational stakeholders. Meanwhile, QML offers unprecedented computational 

capabilities, enabling large-scale energy forecasting for systems such as national grids and global 

telecommunications. 

Finally, there is a pressing need to establish standardized, open-access benchmark datasets of varied 

energy sources and mix, for an efficient energy forecasting in power and telecommunication systems. Such 

datasets would facilitate comparative studies, improve model evaluations, and accelerate advancements across 

academia and industry, particularly in energy related tasks. 
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