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I. INTRODUCTION, DEFINITIONS AND NOTATIONS 

Let f be an entire function defined in the open complex plane  . The maximum term ),( fr of 
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 . To start our paper we just recall the following 

definitions. 
 

Definition 1 The order f and lower order f of an entire function f  is defined as follows: 
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If f then f is of finite order. Also 0f means that f is of order zero. In this connection Liao and 

Yang [2] gave the following definition. 

Definition 2 [2]Let f be an entire function of order zero. Then the quantities 
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Datta and Biswas [1] gave an alternative definition of zero order and zero lower order of an entire function in the 
following way: 

Definition 3 [1] Let f  be an entire function of order zero. Then the quantities 
**

f and 
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f of f  are defined by: 
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it is easy to see that 
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In this paper we investigate some aspects of the comparative growths of maximum terms of two entire functions 

with their corresponding left and right factors. We do not explain the standard notations and definitions on the theory of 
entire function because those are available in [5]. 

II. LEMMAS 
In this section we present some lemmas which will be needed in the sequel. 

 

Lemma 1 [3] Let f  and g  be two entire functions with .0)0( g Then for all sufficiently large values of ,r  
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Lemma 2 [3] Let f and g  be two entire functions. Then for every 0 and ,0 Rr   
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Lemma 3 [1] Let f and g  be two entire functions such that f and .0g then .fog  

III. THEOREMS 
 

In this section we present the main results of the paper. 
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Proof. In view of Lemma 1 we obtain for all sufficiently large values of ,r  
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 Again from the definition of 
**

f we have for arbitrary positive and for all sufficiently large values of ,r  
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 Therefore it follows from (2) and (3) for all sufficiently large values of r that 
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This completes the proof. 
 

Remark 1 If we take 0g instead of 0g in Theorem 1 and the other conditions remain the same, then in the line 

of Theorem 1 one can easily verify that 
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Remark 2 Also if we consider  **0 f or  **0 f instead of  ****0 ff  in Theorem 1 and the 
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Theorem 2  Let f and g be two an entire functions such that  **0 f and .0  gg  Then 
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Proof. Since g  is the order of g , for given  and for all sufficiently large values of r  we get from the definition of 

order that 
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As 0g , the theorem follows from (5) . 

Remark 3 If we take  **0 f instead of  **0 f in Theorem 2 and the other conditions remain the same, then 

in the line of Theorem 2 one can easily verify that 
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Remark 4 Also if we consider .0  g or .0  g instead of .0  gg  in Theorem 2 and the 

other conditions remain the same, then in the line of Theorem 2 one can easily verify that 
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Theorem 3 Let f and g be two an entire functions such that .0  ff  and .** g Then 
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As 0f , the theorem follows from (8) . 

 

Remark 5 If we take  f0 or  f0 instead of  ff 0 in Theorem 3 and the other 

conditions remain the same, then in the line of Theorem 3 one can easily verify that 
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Remark 6 Also if we take .** g instead of .** g in Theorem 3 and the other conditions remain the same, then in 
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Theorem 4 Let f and g be two an entire functions such that  ****0 ff  and .0** g Then 
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This completes the proof. 
 

Remark 7 Under the same conditions of Theorem 4 if  
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Remark 8 In Theorem 4 if we take 0** g instead of 0** g and the other conditions remain the same then it can be 

shown that 
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Remark 9 Also if we consider  **0 f or  **0 f instead of  ****0 ff  in Theorem 4 and the 

other conditions remain the same, then one can easily verify that 
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Theorem 5 Let f and g  be two an entire functions such that  ****0 gg  and .0** f Then 
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This proves the theorem. 

Remark 10 Under the same conditions of Theorem 5 if 
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Remark 11 In Theorem 5 if we take .0** f instead of .0** f and the other conditions remain the same then it can 
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In addition if 
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gg   , then 
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Remark 12 Also if we consider  **0 g or  **0 g instead of  ****0 gg  in Theorem 5 and the 
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This completes the proof. 
 Similarly we may state the following theorem without proof for the right factor g  of the composite function 
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Remark 13 Under the same conditions of Theorem 6 if 
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f and the other conditions remain the same then it can be 

shown that 
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In addition if 
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gg   , then 
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Remark 18 If we take  **0 g or  **0 g instead of  ****0 gg  in Theorem 7 and the other 

conditions remain the same, then one can easily verify that 
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