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Abstract:- A mathematical model to describe the effect of increase in bed volume of a three-dimensional 

fluidized bed electrode operating under the condition of mass transfer is presented. The process of 

electrodeposition within electrochemical reactor results in the increase of particle sizes. This phenomenon 

increases the volume of the bed. The model incorporates the pseudo-stationary behaviour in the reactor since the 

bed increases in volume due to the particle size growth. The developed differential equations are resolved using 

finite difference method. The overpotential distribution and the reaction rate within the reactor are calculated. 

The principal results are the effects of the limiting current operation on the superficial displacement with time. 

The mathematical modelling shows that the bed expansion is independent of the reactor width, the porosity and 

the current densities.     

 

Keywords:- Fluidized bed electrodes, electrochemical reactors, perpendicular configuration, mathematical 

modelling and limiting current. 

 

I. INTRODUCTION 
 Fluidized bed electrodes have been widely used in the removal processes of toxic and pollutant 

materials and recovery of heavy metals from industrial effluents. This technique offers direct use of 

electrochemical reactors designed to carry out such industrial waste cleaning. Fluidized bed electrodes, 

consisting of electrically conducting particles in an electrolyte, behave as three-dimensional electrodes which 

are suitable for the design of many electrochemical reactors. Such electrodes provides high rate of mass transfer 

and large area per unit volume for electrochemical reactions to occur even in very dilute solutions that need low 

current densities. Consequently, fluidized bed electrodes have found their numerous industrial applications, such 

as organic electrosynthesis, industrial effluents purification and electrowinning of metals from very dilute 

solutions. Generally, the rate of reaction is controlled either by mass transport of chemical species from the bulk 

of the solution to the surface of the electrodes or by electrode transfer on the electrode surface. The control is 

termed mist if none of these mechanisms is explicit in the system [1, 2]. Generally, in terms of configuration, 

fluidized bed electrodes are classified as perpendicular when the electrolyte flow is in the axial direction and the 

current flow in the lateral direction and parallel when they are in the same direction. A perpendicular 

configuration is preferred being that it offers a better potential distribution (more uniform potential) and high 

conversion factor.  

 

*All correspondence should go this author. 

 Mathematical modelling of electrochemical reactors is utilized for detailed analysis of the systems. One 

of the advantages is usually to improve productivity or save costs in investment and operation. 

Phenomenological understanding of the system behaviour and performance is usually necessary to carry out 

such mathematical simulations. Sometimes such calculations may introduce certain innovations of technical 

importance for engineering design and scale up. For the engineering and scale up applications of the fluidized 

bed electrode, potential distribution and reaction rate distribution within the system must be investigated and 

properly analysed. Some authors have elaborated on models which describe the behaviour of electrochemical 

reactors with perpendicular configuration [3-5]. A parallel configuration has been reported by several authors 

[6-9]. These authors obtained results which were in agreement with theoretical predictions. The basic 

information on how to treat the kinetics involved in the electrochemical engineering systems can be found in 

refs [9-10]. A reformulation of the Buttler-Volmer equation, introducing limiting current showed to be 

important for the optimization of porous electrode systems with carbon particles because such electrodes 

possess high superficial area [10]. It will be interesting to note that for a fluidized bed electrochemical reactor, 

the transfer of charge in the dispersed phase takes place by intermittent particle contact and the quality of 

transferred chare from one particle to another is proportional to the potential difference between them at 

moment of contact [9]. In terms of current efficiency and productivity, fixed beds offer better results, however, 

with time, the particles grow, closing the pores and thereby retarding the continuous functioning of the bed. 
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Fluidized bed electrodes offer an adequate alternative to resolve this difficulty and from the engineering point of 

view, easy construction, apart from the possibility of on line removal of particle [7]. Some other distinct 

advantages that electrochemical techniques offer relative to other conventional technologies include: energy 

efficiency, versatility, environmental compatibility, safety, amenability to automation and selectivity.  

The process of electrode position or electrowinning occurring within electrochemical reactor results in the 

increase of particle sizes and consequently increases the volume of the bed. This paper aims at developing a 

mathematical model capable of predicting the behaviour of a three dimensional fluidized bed electrode 

(electrochemical reactor) with perpendicular configuration and in expansion. In addition, this investigation has 

an added advantage of assisting in engineering project and scale-up. 

 The reactor in consideration is fluidized bed electrochemical reactor, with rectangular geometry and 

perpendicular configuration operating under limiting current condition. The reactor was modelled with emphasis 

on the reaction mechanisms occurring in the system. The analysis done in this investigation is based on 

numerical solution (finite difference) of differential balances of mass and electrical charges in the reactor, 

thereby permitting a prediction of the over potential distribution in the reactor.    

      

 

II. MATHEMATICAL MODEL OF THE FLUIDIZED BED 
 The modelled system shown in figure 1 is a fluidized bed electrochemical reactor with a rectangular 

geometry and perpendicular configuration whose thickness, width, and height are marked X,Y and Z 

respectively. The bed is composed of very highly conductive non porous particles whose specific surface area is 

am, a uniform porosity ε and a thickness X. If the electric current direction is the same as that of the movement 

of the positive charges, the current feeder is then located at surface x = L and the reception or the counter 

current on the surface x = 0. A superficial velocity of the electrolyte solution u entering the reactor is uniform 

along the transversal area. The electrical conductivities of the solid and liquid phases are denominated 

respectively by σm and σs.  

 The formulation of the model is based on the transport equations proposed by Gubulin [1, 2]. These 

equations were applied to a two-phase solid-liquid system resulting in the following charge and mass balances:   

i. Solid phase mass balance 
𝝏

𝝏𝒕
  𝟏 − 𝜺 𝑪𝒌,𝒎 + 𝒅𝒊𝒗  𝟏 − 𝜺 𝑪𝒌,𝒎𝑽   𝒌,𝒎 =   𝟏 − 𝜺 𝑹𝒌,𝒎                                                    (1)               

ii. Solid phase charge balance 

𝒅𝒊𝒗  𝟏 − 𝜺 𝒊 𝒎 =   𝟏 − 𝜺 𝑭 
𝒛𝒌

𝑴𝒌
𝒌 𝑹𝒌,𝒎                                                                                 (2) 

The respective constitutive equations are: 

𝐶𝑘,𝑚𝑣𝑘,𝑚 = 𝐶𝑘,𝑚𝑣 𝑚   
𝑖 𝑚 =  −𝜎𝑚𝑔𝑟𝑎𝑑∅𝑚  

      iii.   Liquid phase mass balance 

 
𝝏

𝝏𝒕
 𝜺𝑪𝒌,𝒔 + 𝒅𝒊𝒗 𝜺𝑪𝒌,𝒔𝒗   𝒌,𝒔 =  𝜺𝑹𝒌,𝒔                                                                                        (3)     

       iv.   Liquid phase charge balance        

  𝒅𝒊𝒗 𝜺𝒊𝒔     =  𝜺𝑭 
𝒛𝒌

𝑴𝒌
𝒌 𝑹𝒌,𝒔                                                                                                       (4) 

The constitutive equations for the liquid phase are: 

𝐶𝑘,𝑠𝑣 𝑘,𝑠 =  −𝐷𝑘,𝑠
𝑒𝑓

𝑔𝑟𝑎𝑑𝐶𝑘,𝑠 +  𝐶𝑘,𝑠𝑣 𝑠 − 𝑧𝑘𝐹𝐶𝑘,𝑠𝜇𝑘,𝑠𝑔𝑟𝑎𝑑𝜙𝑠  

𝑖𝑠 =  − 𝐹
𝑧𝑘
𝑀𝑘

𝑘

𝐷𝑘,𝑠
𝑒𝑓

𝑔𝑟𝑎𝑑𝐶𝑘,𝑠 − 𝜎𝑠𝑔𝑟𝑎𝑑𝜙𝑠 

 

 

Where by conservation of mass and charge,  

 𝟏 − 𝜺  𝑹𝒌,𝒎
𝒎
𝒌=𝟏 =  −𝜺 𝑹𝒌,𝒔

𝒎
𝒌=𝟏                                                                                          (5) 

 𝟏 − 𝜺  
𝒛𝒌

𝑴𝒌

𝒎
𝒌=𝟏 𝑹𝒌,𝒎 =  −𝜺 

𝒛𝒌

𝑴𝒌
𝑹𝒌,𝒔

𝒎
𝒌=𝟏                                                                                 (6) 

The equation for the rate of reaction of the chemical specie k, in the electrolyte is generally written as: 

𝑹𝒌,𝒔 =  𝒂𝒎
 𝟏−𝜺 

𝜺

𝒊𝒌,𝒔
∗

𝑭
𝒛𝒌
𝑴𝒌

.                                                                                                                  (7) 

where 

𝑖𝑘,𝑠
∗ =  𝑖𝑘,𝑠

∗   𝜙𝑠 , 𝜙𝑚 , 𝐶1,𝑠 , 𝐶1,𝑠
∗ , … ,                      

Rk,s and 𝒊𝒌,𝒔
∗  are, respectively, the rate of reaction of the chemical specie k, per unit volume of the liquid phase 

and the rate of reaction for the chemical specie k, in terms of charge transferred per unit area of the liquid phase; 

zk is the charge transferred, Mk is the molecular mass of the chemical specie, and F is the Faraday constant 
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whose value is approximately 96500C/mol. The three-dimensional fluidized bed electrode used for this work is 

schematized in Fig. 1.  

For the purpose of simplifying the transport equations, we make the following restrictions: 

i. Only component k = 1 reacts in the system; 

ii. There is no accumulation of the chemical species k > 1, in the liquid phase; 

iii. Hydrodynamic and electrochemical operating conditions are kept constant; 

iv. In the bulk of the solution, outside the diffusion layer, the effects of diffusion and dispersion are 

negligible compared to that of convection, which implies that This implies that 𝒗   𝒌,𝒔 =  𝒗   𝒔  

v. The solid phase does not leave the system, or the average velocity of the solid phase is zero which 

implies that 𝒗𝒎 = 𝟎;  Then 

 
𝝏

𝝏𝒕
  𝟏 − 𝜺 𝑪𝒌,𝒎 + 𝒅𝒊𝒗  𝟏 − 𝜺 𝑪𝒌,𝒎𝑽𝒎

       =  −𝜺𝑹𝒌,𝒔                                                    (8)                                                                        

   

 
𝝏

𝝏𝒕
 𝜺𝑪𝒌,𝒔 + 𝒅𝒊𝒗 𝜺𝑪𝒌,𝒔𝑽𝒔

      =  𝜺𝑹𝒌,𝒔                                                                               (9)       

 

𝒅𝒊𝒗 𝜺𝑪𝒌,𝒔𝑽𝒔
      = 𝟎,              k = 3,4,...,m                                                                      (10)                                                                            

 

𝒅𝒊𝒗  𝟏 − 𝜺 𝒊𝒎      =  −𝜺𝑭
𝒛𝒌

𝑴𝒌
𝑹𝒌,𝒔                                                                                 (11)                                                                       

 

𝒅𝒊𝒗 𝜺𝒊𝒔     =  𝜺𝑭
𝒛𝒌

𝑴𝒌
𝑹𝒌,𝒔                                                                                               (12)                                                                                              

 

𝒊 𝒔 =  −𝝈𝒔𝒈𝒓𝒂𝒅∅𝒔                                                                                                       (13)                                                                                                            

 

𝒊 𝒎 =  −𝝈𝒎𝒈𝒓𝒂𝒅∅𝒎                                                                                                   (14)    

 

 

Potential Distribution Equations in the Reactor                                                                                                

These equations are simplified and applied to a system of rectangular geometry and perpendicular configuration 

as shown in Fig. 1. The suppositions made for the simplification of the above equations are: 

1. The potential and the current density are only functions of the variable x, 

2. The superficial velocity of the electrolytic solution is sufficiently high  to ensure that concentration change 

through the through the bed height is insignificant, 

3. The porosity and the specific area are kept uniform and do not vary with time during the operation. 

4. The operation is isothermal. 

With these conditions equations 10 through 16 reduce to 

Potential in the solid phase 
𝒅𝟐∅𝒎

𝒅𝒙𝟐 =  
𝟏

𝝈𝒎

𝜺

 𝟏−𝜺 
𝑭

𝒛𝒌

𝑴𝒌
𝑹𝒌,𝒔                                                                                                      (15) 

Potential in the liquid phase 
𝒅𝟐∅𝒔

𝒅𝒙𝟐 =  −
𝟏

𝝈𝒔
𝑭

𝒛𝒌

𝑴𝒌
𝑹𝒌,𝒔                                                                                                             (16) 

 

Boundary Conditions 

The boundary conditions in the system in terms of the charge transfer are: 

1. At the feeder, practically, all the current is carried by the liquid phase and at the receptor all the current 

is by the metallic phase. Therefore, 

x = 0; 
𝒅∅𝒔

𝒅𝒙
= 𝟎  and  x = X,  

𝒅∅𝒎

𝒅𝒙
= 𝟎                                                                                    (17) 

2. If the system operates under constant current, then 

x=0;
𝒅∅𝒎

𝒅𝒙
= −

𝑰

 𝟏−𝜺 𝝈𝒎𝑨
                                                                                                            (18) 

x = X, 
𝒅∅𝒔

𝒅𝒙
= −

𝑰

𝜺𝑨𝝈𝒔
                                                                                                                (19) 

where I is the total current applied and A = AL = Y.L(t) is the lateral area of the bed. 

 

Kinetics of the System 

 If, in the neighbourhood of the solid phase, exists a boundary layer of width δ, the rate of reaction of 

the chemical specie k, in the liquid phase in terms of electron transfer is: 
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𝒊𝒌,𝒔
∗ = −𝑭

𝒛𝒌

𝑴𝒌

𝑫𝒌

𝜹
 𝑪𝒌,𝒔 − 𝑪𝒌,𝒔

∗                                                                                           (20) 

A combination of this equation with equation 7 results: 

𝑹𝒌,𝒔 = −𝒂𝒎
 𝟏−𝜺 

𝜺

𝑫𝒌

𝜹
 𝑪𝒌,𝒔 − 𝑪𝒌,𝒔

∗                                                                                   (21) 

At the solid-liquid interface, an intrinsic kinetic will always exists and can be represented by the Butler-Volmer 

equation given as: 

𝒊𝒌,𝒔
∗ =  𝒊𝟎  𝒆𝒙𝒑  −

𝜶𝒏𝑭

𝑹𝑻
𝜼 − 𝒆𝒙𝒑  

 𝟏−𝜶 𝒏𝑭

𝑹𝑻
𝜼                                                                  (22) 

Where 

𝒊𝟎 = 𝒏𝑭𝒌𝟎𝑪𝒌,𝒔
∗                                                                                                                 (23) 

A combination with equation 7 results: 

𝑹𝒌,𝒔 =  −𝒂𝒎
 𝟏−𝜺 

𝜺

𝑴𝒌

𝑭𝒛𝒌
𝒊𝟎  𝒆𝒙𝒑  −

𝜶𝒏𝑭

𝑹𝑻
𝜼 − 𝒆𝒙𝒑  

 𝟏−𝜶 𝒏𝑭

𝑹𝑻
𝜼                                           (24) 

In these equations, Dk is the diffusion coefficient of the chemical specie k participating in the reaction, n is the 

number of electrons involved in the reaction, i0 is the exchange current density, Ck,s and 𝑪𝒌,𝒔
∗  are the bulk and 

superficial concentrations, respectively, 𝜹 is the width of the boundary layer, 𝜶 is the charge transfer coefficient, 

and 𝜼 is the surtension in the reactor defined by the relation: 

𝜼 = ∅𝒎 − ∅𝒔 −  𝑬𝒆𝒒 +
𝑹𝑻

𝒏𝑭
𝒍𝒏 𝑪𝒌,𝒔

∗                                                                                  (25) 

The process control of the reaction, generally, depends on both the mass and intrinsic kinetic. Eliminating 𝑪𝒌,𝒔
∗ , 

between equations 18 and 21 results: 

   𝑅𝑘,𝑠 = −𝑎𝑚
 1−𝜀 

𝜀
𝐶𝑘,𝑠

Θ

 1+
𝛿

𝐷𝑘
Θ 

;                 

𝚯 =  
𝑴𝒌

𝒛𝒌
𝒏𝒌𝟎  𝒆𝒙𝒑  −

𝜶𝒏𝑭

𝑹𝑻
𝜼 − 𝒆𝒙𝒑  

 𝟏−𝜶 𝒏𝑭

𝑹𝑻
𝜼                                                            (26) 

A close look at equation 26 shows two limiting cases: 

i. If 𝛿 → 0, then   1 +
𝛿

𝐷𝑘
Θ  → 1, then equation 26 reduces to 

𝑹𝒌,𝒔 = −𝒂𝒎
 𝟏−𝜺 

𝜺
𝚯𝑪𝒌,𝒔                                                                                                 (27) 

ii. If  𝛿 >>0 then  1 +
𝛿

𝐷𝑘
Θ  →

𝛿

𝐷𝑘
Θ  and equation 26 becomes  

𝑹𝒌,𝒔 = −𝒂𝒎
 𝟏−𝜺 

𝜺

𝑫𝒌

𝜹
𝑪𝒌,𝒔                                                                                                (28) 

If the system is controlled by intrinsic reaction, equation 27 is used and if controlled by mass transfer, equation 

28 is used. On the other hand, if none of these is the controlling factor, equation 26 should be used. In this work 

we are considering that the system is being controlled by mass transfer. This means that the system is operating 

under limiting current condition.  

Over potential in the Reactor: 

If equation 16 is subtracted from equation 15, the model for the distribution of the surtension in the reactor is 

obtained after substituting equation 21:  
𝒅𝟐𝜼

𝒅𝒙𝟐 =  −𝒂𝒎  
𝟏

𝝈𝒎
+ 

 𝟏−𝜺 

𝜺𝝈𝒔
 
𝑫𝒌

𝜹
𝑭

𝒛𝒌

𝑴𝒌
 𝑪𝒌,𝒔                                                                               (29) 

The respective boundary conditions are 

 
𝒅𝜼

𝒅𝒙
 
𝒙=𝟎

=  −
𝑰

 𝟏−𝜺 𝝈𝒎𝑨
                                                                                                           (30) 

     

 
𝒅𝜼

𝒅𝒙
 
𝒙=𝑿

=  
𝑰

𝜺𝝈𝒔𝑨
                                                                                                                     (31)  

 

The Model for the Displacement of the Bed Surface 

If the electrochemical phenomena are more rapid than the fluid dynamic phenomena of the increase in volume 

of the reactor, the process can be considered pseudo-stationary. The equation that predicts the interfacial 

displacement, L(t) is given as:  
𝒅𝑽

𝒅𝒕
=  𝑨𝒃

𝒅𝑳

𝒅𝒕
                                                                                                                             (32) 

But  

𝑽 =
𝑴𝒌

𝝆𝒎 𝟏−𝜺 
                                                                                                                            (33) 

Therefore, 
𝒅𝑴𝒌

𝒅𝒕
= 𝝆𝒎 𝟏 − 𝜺 𝑨𝒃

𝒅𝑳

𝒅𝒕
                                                                                                          (34) 

On the other hand, if the reactor operation approximates a steady state operation of an ideal discontinuous 

reactor, then 
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𝒅𝑴𝒌

𝒅𝒕
≈ −𝜺𝑨𝑳  𝑹𝒌,𝒔 𝒙 𝒅𝒙

𝒙=𝑿

𝟎
                                                                                                 (35) 

Based on Fig. 1, AL/Ab = L/X and equation 31 equal to equation 32, therefore: 
𝒅𝑳

𝒅𝒕
= −

𝜺

𝝆𝒎 𝟏−𝜺 

𝑳

𝑿
 𝑹𝒌,𝒔 𝒙 𝒅𝒙
𝒙=𝑿

𝟎
                                                                                          (36) 

Since the bed is subject to an expression with time due to the particles growth, the specific surface area am and 

the lateral area AL of the bed automatically become time dependent variables. Consequently, if the initial height 

of the bed and the initial particle radius are respectively, L0 and r0, then, in any given time, we get: 

𝒓 =  𝒓𝟎 
𝑳

𝑳𝟎

𝟑
                                                                                                                             (37) 

Consequently, for equilateral cylindrical particles used in this investigation, the specific surface area can be 

written as: 

 

𝒂𝒎 =  
𝑨𝒑

𝑽𝒑
=  

𝟑

𝒓𝟎  
𝑳

𝑳𝟎

𝟑
                                                                                                                  (38) 

Substituting equation 38 in equation 33results: 
𝒅𝑳

𝒅𝒕
=

𝟑

𝝆𝒎 

𝑳

𝒓𝟎  
𝑳

𝑳𝟎

𝟑
 𝑹𝒌,𝒔 𝒙 𝒅𝒙
𝒙=𝑿

𝟎
                                                                                              (39) 

 

 Equations 29, 30, 31 and 39 represent mathematical model for a reactor in expansion. The method of 

finite difference is implemented on equation 39 after substitution of equation 28 and resolved with the boundary 

conditions, 30 and 31. The position of the interface in a given time can be calculated by equation 39, with L = L0 

for t = 0. The model is applied to the system where copper is being deposited.  

 The conductivities σm and σs used in these simulations are respectively, 250.0Ω
-1

m
-1

 and 50.0Ω
-1

m
-1

. 

The simulations were based on a laboratory reactor having initial height of 0.0880252m, and thickness of 

0.019m, 0.024m and 0.029m. Copper ion concentration in the electrolytic solution was 508.368g/m
3
. The 

simulation parameters were the current density, bed porosity, concentration, and position of the superficial 

interface of the bed.  

 

III. RESULTS AND DISCUSSION 

 
Fig. 2 Potential distribution of metallic liquid phases for fixed bed reactor ( ε = 0.36) 
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Fig. 3 Potential distribution of metallic and liquid phases for fluidized bed reactor (ε = 0.5) 

 

Figures 2 and 3 show typical potential distributions of metallic and liquid phases in the reactor with bed 

porosities of 0.36 and 0.50, respectively, for different values of applied currents. The potentials of the metallic 

phase are practically uniform in relation to the liquid phase, probably due to the effect of the higher values of the 

electrical conductivities of the metallic phase used in relation to that of the liquid phase.       

 

 
Fig. 4 Distribution of the over potentials in fixed bed reactor (ε = 0.36) for  

different values of the applied current. 
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Fig. 5 Distribution of the over potentials in fluidized bed reactor (ε =0.5) for 

 Different values of the applied current. 

 

 Figures 4 and 5 illustrate the overpotential distributions in the reactor for different values of applied 

current. The distributions show a negative increase of overpotential for high applied currents. This behaviour 

signifies that high current density produces a high reaction rate.  Increase in the density of current means 

increase in the number of electrons available to react with copper ions present in the solution. It can also be 

observed that electrochemical activities are confined to the region close to the receptor or membrane. This 

behaviour has been observed in the electrosynthesis of organic products by German and Goodridge [8].  A 

comparison of these figures shows that low overpotential values are associated with high bed porosity. 

Consequently, fixed-bed reactors are associated with high electrochemical reaction rates in contrast to fluidized 

ones. 

 
Fig. 6 Distribution of over potentials for fixed bed reactor (ε = 0.36) for different reactor widths. 
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Fig. 7 Distribution of over potentials for fluidized bed reactor (ε = 0.5) for different reactor widths 

  

 Figures 6 and 7 show the distributions of over potentials for fixed and fluidized beds respectively, for 

different reactor widths. Close observation of these figures shows that the higher the porosity, the higher the 

values of the overpotentials in both cathodic and anodic regions. These figures also show that the higher the 

reactor width, the more cathodic are the overpotentials. These figures demonstrate that the major alterations of 

the overpotentials, occur at vicinity of the current feeder or the micro porous diaphragm.     

 
Fig. 8 Distribution of bed expansion over time for various concentrations 
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 The displacement or the increase in the bed height with time is illustrated in figures 8 for different 

concentrations of C1 = 508.36, C2 = 408.36 and C3 = 308.36, respectively. A notable feature of these 

distributions is that the bed growth is proportional to the concentrations. That is, the reactor with a least 

concentration experienced least expansion. This result is true since the rate of electrodeposition is proportional 

to the local mass density.  

 

IV. CONCLUSIONS 
 This investigation has theoretically demonstrated the behaviour of a three-dimensional fluidized bed 

electrode operating under current limit and pseudo-static conditions as seen in the literatures [3,6,11]. The 

electrochemical active regions are situated close to the receptor and about ten percentage of this region is 

electrochemically active. The model is capable of predicting the behaviour of a fluidized bed in expansion. It is 

important to note that the expansion model is independent of the local porosity, width of the reactor, and the 

applied current density. In these simulations, only the reaction of copper was analysed, consequently, the current 

efficiency will be 100%. However, experimental investigations have shown that, despite the fact that the 

increase in the applied current caused an increased reaction rate, its effect, as far as the efficiencies of current 

and energy are concerned, there was no benefit, because, there is always a decrease in both the current and 

energy efficiencies as we increase the current density.     

 

Nomenclature 

am Specific surface of the solid[m
-1

] 

AL Lateral area of the bed[m
2
] 

Ap Particulate phase area[m
2
] 

Ab Base area of the bed[m
2
] 

Ck,s Concentration of the chemical specie k in the liquid phase [g/m
3
] 

𝐶𝑘,𝑠
∗  Concentration of the chemical specie k in the liquid phase  on the electrode surface[g/m

3
] 

Dk Diffusion coefficient of the chemical specie k [m
2
/s] 

Eeq Equilibrium potential[V] 

F Faraday constant[96500C/m 

I Current density [A/m
2
] 

is Liquid phase current density [A/m
2
] 

im Solid phase current density [A/m
2
] 

I Total applied current [A] 

𝑖𝑘,𝑠
∗  Reaction rate of the chemical specie k in term s of charge per area [A/m

2
] 

i0 Exchange current density [A/m
2
] 

L0 Initial bed thickness [m] 

L Bed height at a particular instant [m] 

Mk Mass of the copper particles[g] 

N Number of electrons 

Rk,s Mass rate of reaction of chemical specie k per unit volume of the liquid[g/m
3
s] 

R Universal gas constant [8.314Jmol
-1

K
-1

] 

r0 Initial particle radius[m] 

R Particle radius at a particular instant, t [m] 

T Time [s] 

T Temperature [K] 

U Superficial velocity of the electrolyte [m/s] 

vk,s Local velocity of the chemical specie k in the solution bulk [m/s] 

vs Average velocity of the solution phase [m/s] 

V Bed volume [m
3
] 

Vp Particle phase volume [m
3
] 

X Space coordinator[m] 

zk Number of transferred charges [-] 
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Greek Symbols 

Α Kinetic constant [-] 

η Overpotential[V] 

δ Thickness of diffusion layer[m] 

ε Porosity [-] 

ζm Metal conductivity [Ω
-1

m
-1

] 

ϕm Metal phase potential [V] 

ϕs Liquid phase potential [V] 

ζs Solution conductivity[Ω
-1

m
-1

] 
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