*e-ISSN: 2278-067X, p-ISSN: 2278-800X, www.ijerd.com Volume 10, Issue 5 (May 2014), PP.53-56* 

## **Skolem Mean Labeling Of Nine Star Graphs**

<sup>1</sup>D. S. T. Ramesh, <sup>2</sup>I. Gnanaselvi, <sup>3</sup>S. Alice Pappa, <sup>4</sup>P. Alayamani

<sup>1</sup>Department of Mathematics Margoschis College, Nazareth – 628 617 Tamil Nadu, INDIA <sup>2</sup>Department of Mathematics Jayaraj Annapackiam C.S.I. College of Engineering Nazareth – 628 617, Tamil Nadu, INDIA

<sup>3</sup>Department of Mathematics, Margoschis College, Nazareth-628 617, Tamil Nadu, India. <sup>4</sup>Department of Mathematics, Pope's College, Sawyerpuram-628251, Tamil Nadu, India.

**Abstract:**-A graph G = (V, E) with p vertices and q edges is said to be a skolem mean graph if there exists a function f from the vertex set of G to  $\{1, 2, ..., p\}$  such that the induced map  $f^*$  from the edge set of G to

 $\{2,3,4,...p\}$  defined by  $f^*(e = uv) = \frac{f(u) + f(v)}{2}$  if f(u) + f(v) is even and  $\frac{f(u) + f(v) + 1}{2}$  if f(u) + f(v) is

odd then the resulting edges get distinct labels from

the set  $\{2, 3, ..., p\}$ . In this paper, we prove that nine star graph

$$\begin{split} K_{1,\ell} \cup K_{1,m} \cup K_{1,n} \text{ is a skolem mean graph if } |m-n| = 4 + 7\ell \\ \text{for } \ell = 2, 3, \ldots \end{split}$$

Keywords: Skolem mean graph, skolem mean labeling, star graphs

## I. INTRODUCTION

All graphs in this paper are finite, simple and undirected. Terms not defined here are used in the sense of Harary [3]. The symbols V(G) and E(G) will denote the vertex set and edge set of the graph G. A graph with p vertices and q edges is called a (p, q) graph. In this paper, we prove that six star graph  $K_{1,\ell} \cup K_{1,\ell} \cup K_{1,\ell} \cup K_{1,\ell} \cup K_{1,m} \cup K_{1,m} \cup K_{1,m}$  is a skolem mean graph if  $|m - n| = 4 + 4\ell$  for  $\ell = 2,3, ...$ 

## II. SKOLEM MEAN LABELING

**2.1.0 Definition:** A graph G is a non empty set of objects called vertices together with a set of unordered pairs of distinct vertices of G called edges. The vertex set and the edge set of G are denoted by V(G) and E(G) respectively. |V(G)| = q is called the size of G. A graph of order p and size q is called a (p,q)-graph. If e = uv is an edge of G, we say that u and v are adjacent and that u and v are incident with e.

**2.1.1 Definition:** A vertex labeling of a graph G is an assignment of labels to the vertices of G that induces for each edge xy a label depending on the vertex labels f(x) and f(y). Similarly, an edge labeling of a graph G is an assignment of labels to the edges of G that induces for each vertex v a label depending on the edge labels incident on it. Total labeling involves a function from the vertices and edges to some set of labels.

**2.1.2 Definition:** A graph G with p vertices and q edges is called a mean graph if it is possible to label the vertices  $x \in V$  with distinct elements f(x) from 0, 1, ..., q in such a way that when each edge e = uv is labeled f(u) + f(v) + 1

with 
$$\frac{f(u)+f(v)}{2}$$
 if  $f(u)+f(v)$  is even and  $\frac{f(u)+f(v)+1}{2}$  if  $f(u)+f(v)$  is odd, then the resulting

edge labels are distinct. The labeling f is called a mean labeling of G.

**2.1.3 Definition:** A graph G = (V, E) with p vertices and q edges is said to be skolem mean if it is possible to label the vertices  $x \in V$  with distinct elements f(x) from 1, 2, ..., p in such a way that when the edge e = uv is labelled with  $\frac{f(u) + f(v)}{2}$  if f(u) + f(v) is even and  $\frac{f(u) + f(v) + 1}{2}$  if

f(u) + f(v) is odd, then the resulting edges get distinct labels from 2, 3, ..., p. f is called a skolem mean labeling of G.

A graph G = (V, E) with p vertices and q edges is said to be a skolem mean graph if there exists a function f from the vertex set of G to  $\{1, 2, ..., p\}$  such that the induced map  $f^*$  from the edge set of G to  $\{2, 3, ..., p\}$  defined by

$$f^{*}(e = uv) = \begin{cases} \frac{f(u) + f(v)}{2} & \text{if } f(u) + f(v) \text{ is even} \\ \frac{f(u) + f(v) + 1}{2} & \text{if } f(u) + f(v) \text{ is odd} \end{cases}, \text{ then the resulting edges get distinct labels from the}$$

set  $\{2, 3, ..., p\}$ 

**2.1.4 Definition:** The r-star is the disjoint union of  $K_{1a_1}, K_{1a_2}, K_{1a_3}, ..., K_{1a_r}$  where  $a_1, a_2, ..., a_r$  are positive integers and  $K_{1a_i}$  is a star of length  $a_i$  for  $1 \le i \le r$ . We denote it by  $K_{1a_1} \cup K_{1a_2} \cup K_{1a_3} \cup ... \cup K_{1a_r}$ . G has  $a_1 + a_2 + ... + a_r + r$  vertices and  $a_1 + a_2 + ... + a_r$  edges.

**2.1.5 Theorem:** The nine star 
$$K_{1,\ell} \cup K_{1,\ell} \cup K_{1,m} \cup K_{1,n}$$
 where  $\ell \le m$  is a skolem mean graph if  $|m-n| = 4+7\ell$  for  $\ell = 2, 3, 4, \ldots$ 

$$\begin{array}{l} \text{Proof: Consider the graph } G = K_{1,\ell} \cup K_{1,m} \cup K_{1,n} \\ \text{where } V(G) = \left\{ v_{i,j} : 1 \leq i \leq 7; 0 \leq j \leq \ell \right\} \cup \left\{ v_{8,j} : 0 \leq j \leq m \right\} \cup \left\{ v_{9,j} : 0 \leq j \leq n \right\} \text{ and } E(G) = \left\{ v_{i,0}v_{i,j} : 1 \leq i \leq 7; 1 \leq j \leq \ell \right\} \cup \left\{ v_{8,0}v_{8,j} : 1 \leq j \leq m \right\} \cup \left\{ v_{9,0}v_{9,j} : 1 \leq j \leq n \right\}. \\ \end{array}$$

has  $7\ell + m + n + 9$  vertices and  $7\ell + m + n$  edges.

Without loss of generality, we assume that m < n where  $n = 7\ell + m + 4$  for  $\ell = 2, 3, ...$ and m = 2, 3, ... Let us consider the case that  $|m-n| = 4 + 7\ell$  for  $\ell = 2, 3, ...$  Let us prove that G is a skolem mean graph. The vertex labeling  $f : V(G) \rightarrow \{1, 2, 3, ..., 7\ell + m + n + 9\}$  is defined as follows:

$$f(v_{i,0}) = \begin{cases} i & 1 \le i \le 7 \\ 9 & i = 8 \\ 7\ell + m + n + 8 & i = 9 \end{cases}$$

$$f(v_{i,j}) = \begin{cases} 2\ell(i-1) + 2j + 9 & 1 \le i \le 7; 1 \le j \le \ell \\ 2\ell(i-1) + 2j + 9 & i = 8; 1 \le j \le m \\ 2\ell(i-1) + 2j + 9 & 1 \le j \le n - 2 \end{cases}$$

$$f(v_{9,j}) = \begin{cases} 6+2j & 1 \le j \le n - 2 \\ 7\ell + m + n + 7 & j = n - 1 \\ 7\ell + m + n + 9 & j = n \end{cases}$$

The corresponding edge labeling F is defined as

$$F(uv) = \begin{cases} \frac{f(u) + f(v)}{2} & \text{if } f(u) + f(v) \text{ is even} \\ \frac{f(u) + f(v) + 1}{2} & \text{if } f(u) + f(v) \text{ is odd} \end{cases}$$

$$\begin{split} \text{Then, } F(v_{i,0}v_{i,j}) = \begin{cases} (i-1)\ell + j + 5 & i=1; \quad 1 \leq j \leq \ell \\ (i-1)\ell + j + 6 & 2 \leq i \leq 3; \; 1 \leq j \leq \ell \\ (i-1)\ell + j + 7 & 4 \leq i \leq 5; \; 1 \leq j \leq \ell \\ (i-1)\ell + j + 8 & 6 \leq i \leq 7; \; 1 \leq j \leq \ell \\ (i-1)\ell + j + 9 & 1 \leq j \leq m \end{cases} \\ F(v_{8,0}v_{8,j}) &= 7\ell + j + 9 & 1 \leq j \leq m \\ F(v_{9,0}v_{9,i}) &= 7\ell + m + j + 9 & 1 \leq j \leq n \text{ and } m = 2, 3, 4, \ldots \end{split}$$

The resultant edge labels of G are 6, 7, ...,  $\ell$ +5,  $\ell$ +7, ...,  $2\ell$ +6,  $2\ell$ +7, ...,  $3\ell$ +6,  $3\ell$ +8, ...,  $4\ell$ +7,  $4\ell$ +8, ...,  $5\ell$ +7,  $5\ell$ +9, ...,  $6\ell$ +8,  $6\ell$ +9, ...,  $7\ell$ +8,  $7\ell$ +10, ...,  $7\ell$ +m+9,  $7\ell$ +m+10, ...,  $7\ell$ +m+n+9 and has  $7\ell$ +m+n distinct labels. Hence the induced edge labels of G are distinct. Hence the graph G is a skolem mean graph. **EXAMPLE:** Figure 1 gives an example of skolem mean labeling of

 $K_{1,2} \cup K_{1,2} \cup K_{1,2} \cup K_{1,2} \cup K_{1,2} \cup K_{1,2} \cup K_{1,2} \cup K_{1,3} \cup K_{1,21}$ 





## REFERENCES

- [1] V. Balaji, D. S. T. Ramesh and A. Subramanian, *Skolem Mean Labeling*, Bulletin of Pure and Applied Sciences, Vol. 26E No. 2 (2007), 245 –248.
- [2] V. Balaji, D. S. T. Ramesh and A. Subramanian, *Some Results On Skolem Mean Graphs*, Bulletin of Pure and Applied Sciences, Vol. 27E No.1(2008), 67–74.
- [3] J. A. Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics, 14(2007), #DS6.
- [4] F. Harary, *Graph Theory*, Addison Wesley, Reading Mars, (1972).