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Abstract:- This paper is concerned with Wavelet-Galerkin technique to solve Neumann Helmholtz and 

Neumann Poisson boundary value problems. In compare, to classical finite difference and finite element, 

Wavelet-Galerkin technique has very important advantages. In this paper, we have made an attempt to develop 

a technique for Wavelet-Galerkin solution of Neumann Helmholtz boundary value problem in one dimension 

and Neumann Poisson problem in two dimensions in parallel to the work of J. Besora [6], Mishra etl. [15]. The 

Taylors approach have been used to include Neumann condition in Wavelet-Galerkin setup for 𝒚′′ + 𝜶𝒖 = 𝒇. 

The test examples show that some value of 𝜶 the result match with the exact solution. Neumann Poisson BVP 

results show that the given technique is not fit to the solution for some parameter. 

  

Keywords:- Boundary Value Problems, Wavelets, Scaling Function, Connection Coefficients, Wavelet 
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I. INTRODUCTION 
A. History of Wavelets 

Wavelet is an important area of mathematics and nowadays it becomes an important tool for 

applications in many areas of science and engineering. 

The name wavelet or ondelette was coined the French researchers Morlet, Arens, Fourgeau and Giard 

[16]. The existence of wavelet like functions has been known since early part of the century. The concepts of 

wavelets were provided by Stromberg [18], Meyer [14], Mallat [11]-[13], Daubechies [7], [8], Battle [4], Belkin 

[5] and Lemarie [10]. Since then, wavelet research in mathematics has grown explosively.      

Family of a orthonormal based of compactly supported wavelets for the space of square-integral 

function 𝐿2 ℝ  was constructed by Daubecheis in 1988 (see [8]). That wavelets as bases in a Galerkin method to 

solve Neumann mixed boundary value problem needs a computational domain of sample shape. The wavelet 

based approximations of partial differential equations are more attracting and attention, since the fact that 

orthogonality of compactly supported wavelets. Since Multiresolution Analysis based Fast wavelet transform 

algorithm gained momentum to make attraction of wavelet approximations of ODE‟s and PDE‟s. Wavelet-

Galerkin technique is frequently used nowadays, and its numerical solutions of partial differential equations 

have been developed by several researchers. 

Several researchers used wavelet-Galerkin method in these days by taking Daubechies wavelet as bases 

in a Galerkin method to solve BVP. The contribution in this area is due to the remarkable work by Latto et al. 

[9], Xu et al. [24],[25], Williams et al. [19]-[23], Mishra et al [15] , Jordi Besora [6] and Amartunga et al. [1]-[3]. 

The problems with periodic boundary conditions or periodic distribution have been dealt successfully. However, 

there is problem in dealing with some boundary conditions, D. Patel and Abeyratne [17] have deal wavelet 

Galerkin technique for Nuemann and mixed BVP.  

In this paper, we have proposed  an effective method for solving partial differential equation and 

examines a family of wavelet-Galerkin approximation to the Neumann and mixed boundary value problem, 

using compactly supported wavelets as basis functions introduced by Daubechies [7], [8]. We have used 

Taylor‟s approach to deal with Neumann and mixed Boundary conditions.  

 

 

II. WAVELETS 
 Wavelets are an orthonormal basis functions in 𝐿2 ℝ  which have compactly support, continuity 

properties, a complete basis that is it can be easily generated by simple recurrence relation and very good 

convergence properties.  In this paper only the Daubechies compactly supported wavelets are used. It was 

introduced by Ingrid Daubechies in 1988 using a finite set of nonzero  𝑎𝑘 𝑘=0
𝑁−1 scaling coefficients, with 
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 𝑎𝑘 = 2

𝑁−1

𝑘=0

 

where N denotes the order, or genus of the Daubechies wavelet.  𝑠𝑢𝑝𝑝 𝜙 = [0,𝑁 − 1]  and (𝑁/2 − 1) 

vanishing wavelets moments. 

 A wavelet system consist of a mother scaling function 𝜙(𝑥) and a mother wavelet function 𝜓(𝑥). The 

scaling relation is defined as 

𝜙 𝑥 =  𝑎𝑘𝜙 2𝑥 − 𝑘 

𝑁−1

𝑘=0

= 𝜙 𝑥 =  𝑎𝑘𝜙 2𝑥 

𝑁−1

𝑘=0

 

 The scaling function will also hold for 𝜑 2𝑥 , and, by induction for all 𝜑 2𝑗𝑥 , so we can write all the dialation 

and translation of 𝜑 as 

𝜙𝑗 ,𝑘 𝑥 = 2𝑗 /2𝜙 2𝑗𝑥 − 𝑘  

The wavelet function is defined in terms of the scaling function as 

𝜓 𝑥 ≔  (−1)𝑘𝑎𝑘+1𝜙 2𝑥 + 𝑘 

𝑁−2

𝑘=−1

 

Alternatively, the scaling functions are sometimes define as 

𝜙 𝑥 : =  2  ℎ𝑘𝜙 2𝑥 − 𝑘 

𝑁−1

𝑘=0

 

This simply means that 𝑎𝑘 =  2ℎ𝑘 , with the condition 

 ℎ𝑘

𝑁−1

𝑘=0

=  2 

Wavelets have so many properties. V be a set of all scaling functions  𝜙 𝑥   and W be the set of all wavelet 

functions  𝜓 𝑥  . 

1.  𝜙𝑗 ,𝑘 𝑗≥0,𝑘∈𝑍
 is an orthonormal basis for 𝐿2 ℝ . 

2.   𝑉𝑗+1 = 𝑉𝑗⨁𝑊𝑗 . 

3. 𝐿2 ℝ = 𝑐𝑙𝑜𝑠𝐿2 𝑉0⨁𝑗=0
∞ 𝑊𝑗  . 

4.  𝜙0,𝑘 , 𝜓𝑗 ,𝑘 𝑗≥0,𝑘∈𝑍
 is an orthonormal basis for 𝐿2 ℝ . 

5.   𝜙 𝑥 𝑑𝑥 = 1
∞

−∞
 

6.  𝜙0,𝑘 = 1𝑘∈𝑍 . 

7.  𝜙 𝑥 𝑥𝑘𝑑𝑥 = 0 ∶    𝑘 = 0,… ,
𝑁

2
− 1.

∞

−∞
 

8.  𝑥𝑘 𝑘=0

𝑁

2
−1

∈ 𝑉𝑁  

The mulltiresolution analysis nested sequence 

𝑉0 ⊂ 𝑉1 ⊂ ⋯ ⊂∈ 𝐿2 ℝ  
Satisfying the following properties: 

1. ⋂𝑗 ∈𝑍𝑉𝑗 =  0  

2. 𝑐𝑙𝑜𝑠𝐿2 ⋃𝑗 ∈𝑍𝑉𝑗 = 𝐿2 ℝ  

3. 𝑓 𝑥 ∈ 𝑉𝑗   ⟺   𝑓 2𝑥 ∈ 𝑉𝑗+1 ;      ∀ 𝑗 ∈ ℤ  

4. ∃𝜙𝑉0 such that  𝜙0,𝑘 𝑥 = 𝜙(𝑥 − 𝑘) 
𝑘∈𝑍

forms a Riesz basis for 𝑉0   

 
The wavelet expansion of a function 𝑓 𝑥 ∈ 𝐿2 ℝ  is of the form 

𝑓 𝑥 =  𝑐0𝜙0,𝑙 𝑥 

𝑙∈𝑍

+   𝑐𝑗𝑘𝜓𝑗 ,𝑘

𝑘∈𝑍

∞

𝑗=0

(𝑥) 

in other words  

𝑓(𝑥) ∈ {𝑉0⨁𝑊0⨁𝑊1⨁𝑊2⨁⋯⨁𝑊∞}                   
𝐿2 ℝ 

 

Since 𝑉𝑗+1 = 𝑉𝑗⨁𝑊𝑗one can also write 

𝑓(𝑥) ∈ {𝑉𝑗⨁𝑊𝑗⨁𝑊𝑗+1⨁𝑊𝑗+2⨁⋯⨁𝑊∞}                     
𝐿2 ℝ 

 

and still have an exact representation of 𝑓(𝑥). If this representation is truncated at level j, approximation of 𝑓(𝑥) 

at resolution j (see Mallat [11]-[13] for details).   
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                                                                         𝑓  𝑥 =  𝑐𝑗𝑙𝜙𝑗 ,𝑙 𝑥 

𝑙∈𝑍

                                                                                     (1) 

To solve PDEs we need an expansion for 𝑓(𝑥), but also for the derivatives of 𝑓(𝑥). Daubechies showed that 

∃𝜆 > 0 such that a wavelet of genus N has 𝜆(
𝑁

2
− 1) continuous derivatives; for small N, 𝜆 ≥ 0.55. The notation 

for derivation of the function: 

𝜙𝑙
𝑑 ≔ 

𝜕𝑑𝜙𝑙

𝜕𝑥𝑑
 

Taking d derivatives of equation (1) 

𝑓𝑑 𝑥 =  𝑐𝑙𝜙𝑙
𝑑(𝑥)

𝑙∈𝑍

 

Approximate 𝜙𝑙
𝑑(𝑥)as 

𝜙𝑙
𝑑 𝑥 =  𝜆𝑚

𝑚

𝜙𝑚 (𝑥) 

Where  

𝜆𝑚 =  𝜙𝑙
𝑑 𝑥 

∞

−∞

𝜙𝑚 (𝑥)𝑑𝑥 

which is so called 2-term connection coefficient, when functions are used as basis functions for the Galerkin 

method.  

 

III. WAVELET GALERKIN METHOD 
Galerkin Method was introduced by V.I Galerkin. Consider one-dimensional differential equation. 

                   𝐿𝑢 𝑥 = 𝑓 𝑥 ;                   0 ≤ 𝑥 ≤ 1;                                                                                                   (2) 

where 

                                               𝐿 = −
𝑑

𝑑𝑥
 𝑎 𝑥 

𝑑𝑢

𝑑𝑥
 + 𝑏(𝑥)𝑢 𝑥  

with boundary conditions,  𝑢 0 = 0 and 𝑢 1 = 0.               

Where 𝑎, 𝑏 and 𝑓  are given real valued continuous function on [0,1] . We also assume that 𝐿  is a elliptic 

differential operator. 

Suppose,  𝑣𝑗   is a complete orthonormal basis of 𝐿2 [0,1]  and every 𝑣𝑗  𝐶
2( [0,1]) such that, 

                                       𝑣𝑗  0 = 0       𝑣𝑗  1 = 0        

We can select the finite set Λ of indices j and then consider the subspace S, 

                                        𝑆 = 𝑠𝑝𝑎𝑛{𝑣𝑗 ;   𝑗 ∈ Λ}. 

Approximate solution 𝑢𝑠 can be written in the form, 

                                            𝑢𝑠 =  𝑥𝑘𝑣𝑘 ∈ 𝑆𝑘∈Λ                                                                                                     (3) 

where each 𝑥𝑘  is scalar. We may determine 𝑥𝑘  by seeing the behaviour of 𝑢𝑠 as it look like a true solution on 𝑆.     
i.e. 

                                              𝐿 𝑢𝑠  , 𝑣𝑗   =  𝑓, 𝑣𝑗                     ∀ 𝑗 ∈ Λ,                                                                      (4) 

such that the boundary conditions 𝑢𝑠 0 = 0  and  𝑢𝑠 1 = 0  are satisfied. Substituting 𝑢𝑠  values into the 

equation (4), 

                                            𝐿 𝑣𝑘  , 𝑣𝑗   𝑘∈Λ 𝑥𝑘 =  𝑓, 𝑣𝑗             ∀ 𝑗 ∈ Λ                                                                   (5) 

Then this equation can be reduced in to the linear system of equation of the form 

                                                          𝑎𝑗𝑘 𝑥𝑘 = 𝑦𝑖                                                                                                   (6)              

   or                                                            AX=Y  

                                                                                        

Where 𝐴 =  𝑎𝑗𝑘  𝑗 ,𝑘∈Λ
 and  𝑎𝑗𝑘 =  𝐿 𝑣𝑘  , 𝑣𝑗   , x denotes the vector  𝑥𝑘 𝑘∈Λ and y denotes the vector  𝑦𝑘 𝑘∈Λ  . In 

the Galerkin method, for each subset Λ, we obtain an approximation 𝑢𝑠 ∈ S by solving linear system (6).  

If  𝑢𝑠 converges to 𝑢 then we can find the actual solution. 

Our main concern is the method of linear system (6) by choosing a wavelet Galerkin method. The 

matrix A should have a small condition number to obtain stability of solution and A should sparse to perform 

calculation fast.  

Similarly we can do the same thing in above set up.  

Let   𝜓𝑗 ,𝑘 𝑥 = 2𝑗𝜓 2𝑗𝑥 − 𝑘                                                                                                                                (7) 

is a basis for 𝐿2 [0,1]  with boundary conditions 

        𝜓𝑗 ,𝑘 0 = 𝜓𝑗 ,𝑘 1 = 0       ∀ 𝑗, 𝑘 ∈ Λ  and 𝜓𝑗 ,𝑘  is 𝐶2. 

We can replace equations (4) and   (5) by 
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                                                 𝑢𝑠 =  𝑥𝑗 ,𝑘𝜓𝑗 ,𝑘𝑗 ,𝑘∈Λ  

and  

                                            𝐿 𝜓𝑗 ,𝑘  , 𝜓𝑙 ,𝑚   𝑗 ,𝑘∈Λ 𝑥𝑗 ,𝑘 =  𝑓, 𝜓𝑙 ,𝑚             ∀ 𝑙, 𝑚 ∈ Λ 

So that   AX=Y. 

Where 𝐴 =  𝑎𝑙 ,𝑚;𝑗 ,𝑘  𝑙,𝑚 ,(𝑗 ,𝑘)∈Λ
;             𝑋 =  𝑥𝑗 ,𝑘 (𝑗 ,𝑘)∈Λ

           𝑌 =  𝑦𝑙 ,𝑚 (𝑙,𝑚)∈Λ
           

Then  

𝑎𝑙 ,𝑚;𝑗 ,𝑘 =  𝐿 𝜓𝑗 ,𝑘  , 𝜓𝑙 ,𝑚    

𝑦𝑙 ,𝑚 =  𝑓, 𝜓𝑙 ,𝑚   
Where 𝑙, 𝑚 and  𝑗, 𝑘 represent respectively row and column of A. 

This is an accurate method to find the solution of partial differential equation. 

 

IV. CONNECTION COEFFICIENT 
To find the solution of differential equation using the Wavelet Galerkin technique we have to find the 

connection coefficients which is also explored in Latto et al.([9]), 

                                                      Ωℓ1ℓ2

d1d2 =  Φℓ1

d1 x 
∞

−∞
Φℓ2

d2 (x)dx                                                                         (8) 

Taking derivatives of the scaling function 𝑑 times, we get 

                                                    𝜙𝑑 𝑥 = 2𝑑  𝑎𝑘𝜙𝑘
𝑑(2𝑥 − 𝑘)𝐿−1

𝑘=0                                                                        (9)        

 We can simplify equation (8) then for all Ωℓ1ℓ2

d1d2  gives a system of linear equation with unknown vector Ωd1d2       

                                                        𝑇Ωd1d2 =
1

2𝑑−1 Ωd1d2                                                                                     (10)      

where 𝑑 = d1 + d2 and  𝑇 =  𝑎𝑖 𝑎𝑞−2𝑙+𝑖𝑖 . These are so called scaling equation. 

But this is the homogeneous equation and does not have a unique nonzero solution. In order to make the system 

inhomogeneous, one equation is added and it derived from the moment equation of the scaling function 𝜙. This 

is the normalization equation, 

𝑑! =  −1 𝑑  𝑀𝑙
𝑑

𝑙

Ω𝑙
0,𝑑

 

Connection coefficient Ω𝑙
0,𝑑

 can be obtained very easily using Ω𝑙
d1d2  , 

                                                   Ω𝑙
0,𝑑 =  𝜙d1𝜙𝑙

d2𝑑𝑥 

                                                                      = [𝜙d1−1𝜙𝑙
d2]−∞

∞ −  𝜙d1−1𝜙d2+1𝑑𝑥
∞

−∞
 

As a result of compact support wavelet basis functions exhibit, the above equation becomes 

                                                                                 Ωd1d2 = − 𝜙d1−1𝜙𝑙
d2+1

𝑑𝑥
∞

−∞
                                                 (11) 

After d1 integration,  

 Ω𝑙
d1d2 =  −1 𝑑  𝜙d1−1𝜙𝑙

d2+d3𝑑𝑥 =  −1 𝑑
∞

−∞
Ω𝑙

0,𝑑
 

The moments 𝑀𝑖
𝑘  of 𝜙𝑖  are defined as 

𝑀𝑖
𝑘 =  𝑥𝑘𝜙𝑖(𝑥)𝑑𝑥

∞

−∞

 

With 𝑀0
0 = 1 

Latto et al derives a formula as                   

                                   𝑀𝑖
𝑚 =

1

2(2𝑚 − 1)
  

𝑚

𝑡
 

𝑚

𝑡=0

𝑖𝑚−𝑡   
𝑡

𝑙
 

𝑡−1

𝑙=0

 𝑎𝑖𝑖
𝑡−𝑙

𝐿−1

𝑖=0

                                                                  (12) 

Where 𝑎𝑖‟s are the Daubechies wavelet coefficients. Finally, the system will be  

                                                                                              
𝑇 −

1

2𝑑−1 𝐼

𝑀𝑑
     Ωd1d1 =  

0
d!
                                        (13) 

Matlab software is used to compute the connection coefficient and moments at different scales. Latto et 

al [9] computed the coefficients at j=0 and L=6 only. The computation of connection coefficients at different 

scales have been done by using the program given in Jordi Besora [6]. The scaling function at j=0 and L=6 

connection coefficient prepared by Latto et al [9] is given in Table 1 and Table 2 respectively.   
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Table I: Scaling function at j=0 and L=6 have been provided by Latto et al. [9] 

x Phi(x)  x Phi(x) 

0.000 0  2.500 -0.014970591 

0.125 0.133949835  2.625 -0.03693836 

0.250 0.284716624  2.750 -0.040567571 

0.375 0.422532739  2.875 0.037620632 

0.500 0.605178468  3.000 0.095267546 

0.625 0.743571274  3.125 0.062104053 

0.750 0.89811305  3.250 0.02994406 

0.875 1.090444005  3.375 0.011276602 

1.000 1.286335069  3.500 -0.031541303 

1.125 1.105172581  3.625 -0.013425276 

1.250 0.889916048  3.750 0.003025131 

1.375 0.724108826  3.875 -0.002388515 

1.500 0.441122481  4.000 0.004234346 

1.625 0.30687191  4.125 0.001684683 

1.750 0.139418882  4.250 -0.001596798 

1.875 -0.125676646  4.375 0.000149435 

2.000 -0.385836961  4.500 0.000210945 

2.125 -0.302911152  4.625 -7.95485E-05 

2.250 -0.202979935  4.750 1.05087E-05 

2.375 -0.158067602  4.875 5.23519E-07 

   5.000 -3.16007E-20 

 

 

Table II:  Connection coefficients at j=0 and L=6 have been provided by Latto et al. [9]  using  𝛀 𝒏 − 𝒌 =

 𝝓′′  𝒙 − 𝒌 𝝓(𝒙 − 𝒏)𝒅𝒙 

          Ω[−3] 5.357142857141622e-003 

Ω[−2] 1.142857142857171e-001 

Ω[−1] -8.761904761905105e-001 

Ω[0] 3.390476190476278e+000 

Ω[1] -5.267857142857178e+000 

Ω[2] 3.390476190476152e+000 

Ω[2] -8.761904761904543e-001 

Ω[3] 1.142857142857135e-001 

Ω[4] 5.357142857144167e-003 

 

 

V. TEST PROBLEMS 
Consider  

 

                                                               
𝑑2𝑢(𝑥)

𝑑𝑥2 + 𝛽𝑢 𝑥 = 𝑓                                                                                (14) 

Now we use Wavelet-Galerkin method solution 

Here, we consider 𝐿 = 6  𝑎𝑛𝑑  𝑗 = 0 

We can write the solution of the differential equation (14) is, 

𝑢 𝑥 =  𝑐𝑘2
𝑗
2Φ 2𝑗𝑥 − 𝑘 ,                  𝑥 ∈ [0,1]

2𝑗

𝑘=𝐿−1

 

 

                                                        =  𝑐𝑘Φ 𝑥 − 𝑘 ,                  𝑥 ∈ [0,1]1
𝑘=−5                                                     (15) 

Where 𝑐𝑘  are the unknown constant coefficients 

Substitute (14) in (15) we get 
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𝑑2

𝑑𝑥2
 𝑐𝑘Φ 𝑥 − 𝑘 + 𝛽  𝑐𝑘Φ 𝑥 − 𝑘 = 0 

1

𝑘=−5

 

1

𝑘=−5

 

 

 𝑐𝑘𝜙
′′ 𝑥 − 𝑘 + 𝛽  𝑐𝑘𝜙 𝑥 − 𝑘 = 0 

1

𝑘=−5

 

1

𝑘=−5

 

Taking inner product with 𝜙 𝑥 − 𝑘   
We have 

 𝑐𝑘  𝜙 ′′ 𝑥 − 𝑘 𝜙(𝑥 − 𝑛)
𝐿−1+2𝑗

2𝑗

1−𝐿

2𝑗

+ 𝛽 𝑐𝑘  𝜙 𝑥 − 𝑘 𝜙(𝑥 − 𝑛)
𝐿−1+2𝑗

2𝑗

1−𝐿

2𝑗

= 0 1
𝑘=−5  1

𝑘=−5        

                                        ⟹  𝑐𝑘Ω 𝑛 − 𝑘 + 𝛽 𝑐𝑘𝛿𝑛,𝑘 = 0 1
𝑘=−5  1

𝑘=−5                                                              (16) 

𝑛 = 1 − 𝐿, 2 − 𝐿,…2𝑗  

i.e;     𝑛 = −5,−4,… ,0 1 

where   

Ω 𝑛 − 𝑘 =  𝜙 ′′ 𝑥 − 𝑘 𝜙(𝑥 − 𝑛)𝑑𝑥 

𝛿𝑛,𝑘 =  𝜙 𝑥 − 𝑘 𝜙(𝑥 − 𝑛)𝑑𝑥 

By using Neumann Boundary conditions 

     𝑢 0 = 1;       𝑢′ 1 = 0 

 

Considering left and right boundary conditions we can write  

                                              

                                         𝑢 0 =  𝑐𝑘𝜙 −𝑘 = 

1

𝑘=−5

1                                                                                                        (17) 

                                                                                 

                                              

                                                       𝑢′ 1 =  𝑐𝑘𝜙 1 − 𝑘 = 

1

𝑘=−5

0                                                                                     (18) 

                                                                               

We use Taylors method to approximate derivative on the right side 

                                         𝑢 𝑥 = 𝑢 𝑎 + ℎ𝑢′ 𝑎 +
ℎ2

2!
 𝑢′′ 𝑎 + ⋯⋯ 

 

which gives the approximation of derivative at the boundary using forward, backward or central differences.                                   

Equation (17) and (18) represent the relation of the coefficient 𝑐𝑘 . 

 

We can replace first and last equations of (16) using (17) and (18) respectively. Then we can get the following 

matrix with L=6   

 

 

TC=B 

 

𝑇    =

 
 
 
 
 
 
 
 

0 𝜙(4) 𝜙(3) 𝜙(2) 𝜙(1) 0 0

Ω[1] Ω 0 Ω[−1] Ω[−2] Ω[−3] Ω[−4] Ω[−5]

Ω[2] Ω[1] Ω 0 Ω[−1] Ω[−2] Ω[−3] Ω[−4]

Ω[3] Ω[2] Ω 1 Ω 0 Ω[−1] Ω[−2] Ω[−3]

Ω[4] Ω[3] Ω[2] Ω 1 Ω 0 Ω[−1] Ω[−2]

Ω[5] Ω[4] Ω[3] Ω[2] Ω 1 Ω 0 Ω[−1]

0 0 𝑝 1 𝑝 2 𝑝 3 𝑝 4 0  
 
 
 
 
 
 
 

 

 

𝑝 1 = 𝜙 4 − 𝜙 4 − ℎ  
𝑝 2 = 𝜙 3 − 𝜙 3 − ℎ  
𝑝 3 = 𝜙 2 − 𝜙 2 − ℎ  
𝑝 4 = 𝜙 1 − 𝜙 1 − ℎ  
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                                                  𝐶 =

 
 
 
 
 
 
 
𝑐−5

𝑐−4
𝑐−3

𝑐−2
𝑐−1

𝑐0

𝑐1  
 
 
 
 
 
 

      and    𝐵 =

 
 
 
 
 
 
 
1
0
0
0
0
0
0 
 
 
 
 
 
 

 

 

1. Suppose given Boundary Value Problem is, 

                                            𝑢𝑥𝑥 + 𝑢 = 2                                                                                                              (19) 

              with boundary conditions 𝑢 0 = 1  𝑎𝑛𝑑  𝑢′(1) = 1  

       The exact solution is, 

                                

𝑢 𝑥 = −cos 𝑥 +  
1 − sin 1

cos 1
 sin 𝑥 + 2 

  

𝑐−5 =     -2.7724 

 

𝑐−4 =   -2.8070 

 

𝑐−3 =    -1.7428 

 

𝑐−2 =   -0.4842 

 

𝑐−1 =      0.7705 

 

𝑐0 =       1.8628 

 

𝑐1 =    2.0618 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.1: Wavelet-Galerkin Solution for  𝒖𝒙𝒙 + 𝒖 = 𝟐,  𝒖 𝟎 = 𝟏  𝒂𝒏𝒅  𝒖′(𝟏) = 𝟏 with L=6 and j=7 

 
𝑐−5 =     2.3410 

 

𝑐−4 =   2.8697 

 

𝑐−3 =   2.1410 

 

𝑐−2 =   1.2187 

 

𝑐−1 =    0.9752 

 

𝑐0 =   1.5022 

 

𝑐1 =  1.7439 
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Fig.2: Wavelet-Galerkin Solution for  𝒖𝒙𝒙 + 𝒖 = 𝟐,  𝒖 𝟎 = 𝟏  𝒂𝒏𝒅  𝒖′(𝟏) = 𝟏 with L=6 and j=0 

 
𝑐−5 =   1.8830 

 

𝑐−4 =   2.9599 

 

𝑐−3 =    2.9275 

 

𝑐−2 =   2.0728 

 

𝑐−1 =    1.1728 

 

𝑐0 =    0.9016 

 

𝑐1 =    0.9843 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 3 : Wavelet-Galerkin Solution for  𝒖𝒙𝒙 + 𝒖 = 𝟐,  𝒖 𝟎 = 𝟏  𝒂𝒏𝒅  𝒖′ 𝟏 + 𝒖(𝟏) = 𝟎 with L=6 and j=0 

 
It is observe that this kind of Neumann problem the solution of Helmholtz problem only works for value of 𝛼=1. 

For other value of 𝛼 Wavelets Galerkin techniques to solve the Helmholtz problem (See figure 2 and 3).    
 

2. Suppose given boundary value Problem is, 

                                            𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 𝑞                                                                                                           (20) 

               

 with  𝑢 0, 𝑦 = 1;        
𝜕

𝜕𝑥
 1, 𝑦 = 1;     0 ≤ 𝑦 ≤ 1                                              
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Let   𝑢 = 𝑢(𝑥)𝑒−𝜁𝑦     

𝑢𝑥𝑥 + 𝑢𝑦𝑦 =  𝑢′′ + 𝜁2 = 𝑞𝑒𝜁𝑦  

                          
𝑢𝑥𝑥 + 𝜁2𝑢 = 𝑞𝑒𝜁𝑦 ;         𝑢 0 = 1;  𝑢′ 1 = 1      

  

  Put 𝜁2 = 𝑏 and  𝑞𝑒𝜁𝑦 = 𝑄        

𝑢𝑥𝑥 + 𝑏𝑢 = 𝑄;         𝑢 0 = 1;  𝑢′ 1 = 1      
 

The exact solution is, 

𝑢 𝑥 = (1 − Q)cos 𝜁𝑥 +  
1

𝜁
sec 𝜁 +  1 − 𝑄 tan 𝜁 sin 𝜁𝑥 + 𝑄 

 

 

 

 

 

 

 

 

 
 

 
 

 
 

Fig.4: Wavelet-Galerkin Solution for  𝒖𝒙𝒙 + 𝜻𝟐𝒖 = 𝟐𝒆𝜻𝒚,  𝒖 𝟎 = 𝟏  𝒂𝒏𝒅  𝒖′(𝟏) = 𝟏 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.5: Wavelet Wavelet-Galerkin Solution for  𝒖𝒙𝒙 + 𝜻𝟐𝒖 = 𝟐𝒆𝜻𝒚,  𝒖 𝟎 = 𝟏  𝒂𝒏𝒅  𝒖′(𝟏) = 𝟏 

 

 

 

 

 

 

 

 
 

 

 

 

Fig.6: Wavelet-Galerkin Solution for  𝒖𝒙𝒙 + 𝜻𝟐𝒖 = 𝟐𝒆𝜻𝒚,  𝒖 𝟎 = 𝟏  𝒂𝒏𝒅  𝒖′′(𝟏) = 𝟏 

 
It is observe that changing value b and q the Wavelet Galerkin techniques gives some different answers. 

Figure 6 shows that the graph of error verses 𝛽. From the figures we conclude that for certain value of 𝛽 

Wavelet Galerkin solution near to the exact solution.   
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VI. CONCLUSIONS 
Wavelet method has shown a very powerful numerical technique for the stable and accurate solution of 

one dimensional and two dimensional Neumann Helmholtz and Neumann Poisson boundary value problems. 

The exact solution correlates with numerical solution, using Daubechies wavelets. 
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