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Abstract:- This paper aims to study the effect of harvested predator species on a Holling type IV Prey-Predator 

model involving intra-specific competition. Prey-predator model has received much attention during the last few 

decades due to its wide range of applications.  There are many kind of prey-predator models in mathematical 

ecology.  The Prey-predator models governed by differential equations are more appropriate than the difference 

equations to describe the prey-predator relations. Harvesting has a strong impact on the dynamic evolution of a 

population. This model represents mathematically by non-linear differential equations. The locally asymptotic 

stability conditions of all possible equilibrium points were obtained. The stability/instability of non-negative 

equilibrium and associated bifurcation were investigated by analysing the characteristic equations.  Moreover, 

bifurcation diagrams were obtained for different values of parameters of proposed model.   

 

Keywords:- Prey-Predator model, Holling type functional response, Harvesting, Bifurcation. 

 

I. INTRODUCTION 
The prey-predator model with differential equations give rise to more efficient computational models 

for numerical simulations and it exhibits more plentiful dynamical behaviours than a prey-predator model with 

difference equations of the same type. There has been growing interest in the study of Prey-Predator models 

described by differential equations.  In ecology, predator-prey or plant herbivore models can be formulated as 

differential equations.  It is well known that one of the dominant themes in both ecology and mathematical 

ecology is the dynamic relationship between predators and their prey. One of the important factors which affect 

the dynamical properties of biological and mathematical models is the functional response.  The formulation of 

a predator-prey model critically depends on the form of the functional response that describes the amount of 

prey consumed per predator per unit of time, as well as the growth function of prey [1,15]. That is a functional 

response of the predator to the prey density in population dynamics refers to the change in the density of prey 

attached per unit time per predator as the prey density changes.   

 

 In recent years, one of the important Predator – Prey models with the functional response is the Holling 

type – IV, originally due to Holling which has been extensively studies in many articles [4-6, 11].  Two species 

models like Holling type II, III and IV of predator to its prey have been extensively discussed in the literature 

[2-6,9,16].  Leslie-Gower predator- prey model with variable delays, bifurcation analysis with time delay, global 

stability in a delayed diffusive system has been studied [8,12,14].  Three tropic level food chain system with 

Holling type IV functional responses , the discrete Nicholson Bailey model with Holling type II functional 

response and global dynamical behavior of prey-predator system  has been revisited [7,10,11,13]. The purpose 

of this paper is to study the effect of harvested predator species on a Holling type IV prey predator model 

involving intra-specific competition. We prove that the model has bifurcation that is associated with intrinsic 

growth rate.  The stability analysis that we carried out analytically has also been proved.  

The period-doubling bifurcations and period-halving bifurcations exhibited by the differential 

equations can be attributed to the fact that ecological communities show several unstable dynamical states, 

which can change with very small perturbation. This paper is organized as follows:  In section 2 we introduced 

the model. In section 3, the equilibrium points and the local stability conditions of the trivial and axial 

equilibrium points were investigated by using the theorem when the prey population in system (3) is subject to 

an Holling type IV functional response. In section 4 we analysed the local and dynamical behaviour of the 

interior equilibrium point, when the prey population in system (3) is subject to an Holling type IV functional 

response.  In section 5, some numerical simulations, dynamical behaviour of the system and bifurcation 

diagrams supporting the theoretical stability results were shown in which the plots are generated by using 

MATLAB software.  Finally, the last section 6, is devoted to the conclusion and remarks.   
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In this paper we consider the following Lotka-Volterra Prey- Predator system: 

     ( ) ( )

                                                (1)

( )

dx
xq x yp x

dt

dy
yp x y

dt






 


  


 

         here  (0), (0) 0,x y   

Where     x and y represent the prey and predator density, respectively.  ( ) and ( )p x q x are so-called 

predator  and prey functional response respectively.  ,  0    are the conversion and predator`s death rates, 

respectively.  If ( )
mx

p x
a x




 refers to as Michaelis-Menten function or a Holling type – II function, where 

0m   denotes the maximal growth rate of the species and 0a   is half-saturation constant.  Another class of 

response functions are Holling type-III and Holling type-IV function, in which Holling type – III function is  
2

2
( )

mx
p x

a x



 and Holling type-IV function is

2
( )

mx
p x

a x



.  The Holling type – IV function otherwise 

known as Monod-Haldane function which is used in our model.  The simplified Monod-Haldane or Holling type 

– IV function is a modification of the Holling type-III function.  In this paper, we focus on effect of harvested 

predator species on a Holling type IV prey-predator model involving intra-specific competition and establish 

results for boundedness, existence of a positively invariant and the locally asymptotical stability of coexisting 

interior equilibrium. 

 

II. THE MODEL 
The prey-predator systems have been discussed widely in the many decades.  In the literature many 

studies considered the prey-predator with functional responses. However, considerable evidence that some prey 

or predator species have functional response, because of the environmental factors.  It is more appropriate to add 

the functional responses to these models in such circumstances. For example a system is suggested in (1),  

where ( )x t and ( )y t  represent densities or biomasses of the prey-species and predator species, respectively; 

( )p x  and ( )q x  are the intrinsic growth rates of the predator and prey respectively;     and   are the death 

rates of prey and predator respectively. 

If  
2

( )
1

mx
p x

x



 and  ( ) 1q x ax x   , in ( )p x  assuming 1a   in general function,  where a is the  

half-saturation constant  in the Holling type IV functional response, then Eq.(1) becomes  
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Here , ,     a and m   are all positive parameters. 

Now introducing harvesting factor on predator with intra-specific competitions, the Eq. (2) becomes 

2
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1

                                                 (3)                                
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With (0), (0) 0x y   and , , , , , ,m a b e   , 0     q and E  are all positive constants. 

Where a is the intrinsic growth rate of the prey population;   is the intrinsic death rate of the predator 

population; b  is strength of intra-specific competition among prey species;   is strength of intra-specific 

competition among predator species; m  is direct measure of predator immunity from the prey;   is maximum 
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attack rate of prey by the predator , e  represents the conversion rate, E  is harvesting effort and finally 0q  is 

the catchability coefficient. The catch-rate function 0q E  is based on the catch-per-unit-effort (CPUE). 

 

III. EXISTENCE AND LOCAL STABILITY ANALYSIS WITH PERSISTENCE 
 In this section, we first determine the existence of the fixed points of the differential equations (3), and 

then we investigate their stability by calculating the Eigen values for the variation matrix of (3) at each fixed 

point.   To determine the fixed points, the equilibrium is the solution of the pair of equations below: 
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                                                 (4)                                
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By simple computation of the above algebraic system, it was found that there are three nonnegative fixed points: 

 

(i)  0 0,0E  is the trivial equilibrium point always exists. 

(ii)
1 ,0

a
E

b

 
  
 

 is the axial fixed point always exists, as the prey population grows to the carrying capacity in 

the absence of predation. 

(iii)  * *

2 ,E x y  is the positive equilibrium point exists in the interior of the first quadrant if and only if 

there is a positive solution to the following algebraic nonlinear equations 

 

We have the following polynomial with fifth and third degree. 
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Remark 1:  There is no equilibrium point on y  axis as the predator population dies in the absence of its prey. 

 

Lemma: For values of all parameters, Eqn.(3) has fixed points, the boundary fixed point and the positive fixed 

point  * *,x y  , where  
* *,x y  satisfy 
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Now we study the stability of these fixed points.  Note that the local stability of a fixed point  ,x y  is 

determined by the modules of Eigen values of the characteristic equation at the fixed point.  

The Jacobian matrix J of the map (3) evaluated at any point  ,x y  is given by  

11 12

21 12

( , )                                                                          (7)                                
a a

J x y
a a

 
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 
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and the characteristic equation of the Jacobian matrix  ,J x y  can be written as 

    2 , , 0p x y q x y    , 

 Where  

   11 22,p x y a a   ,               11 22 12 21,q x y a a a a  . 

In order to discuss the stability of the fixed points, we also need the following lemma, which can be easily 

proved by the relations between roots and coefficients of a quadratic equation. 

 

Theorem:  Let
2( )F P Q     . Suppose that  1 0F   , 1 2,   are two roots of ( ) 0F   .  Then (i) 

1| | 1   and 2| | 1   if and only if  1 0F    and 1Q  ; 

(ii) 1| | 1   and 2| | 1   (or  1| | 1   and 2| | 1  ) if and only if  1 0F   ; 

(iii) 1| | 1   and 2| | 1   if and only if  1 0F    and 1Q  ; 

(iv) 1 1    and 2| | 1   if and only if  1 0F    and 0,2P  ; 

(v) 1  and 2 are complex and 1| | 1   and 2| | 1   if and only if 
2 4 0P Q   and 1Q  . 

Let 1  and 2  be two roots of (7), which are called Eigen values of the fixed point  ,x y .  We recall some 

definitions of topological types for a fixed point  ,x y .  A fixed point  ,x y is called a sink if  1| | 1   

and 2| | 1  , so the sink is locally asymptotic stable.   ,x y  is called a source if 1| | 1   and 2| | 1  , so the 

source is locally un stable.   ,x y
 
is called a saddle if 1| | 1   and 2| | 1   (or  1| | 1   and 2| | 1  ).  And 

 ,x y  is called non-hyperbolic if either  1| | 1   and 2| | 1  .   

 

Proposition 1:  The Eigen values of the trivial fixed point  0 0,0E   is locally asymptotically stable if 

 

0

1
1,   a E

q


    (i.e.,) 0E  is sink point, otherwise unstable if

 

0

1
1,   a E

q


   and also 0E  is 

saddle point if
 

0

1
1,   a E

q


   , 0E  is non-hyperbolic point if

 

0

1
1,   a E

q


   . 

Proof:  In order to prove this result, we estimate the Eigen values of Jacobian matrix J at  0 0,0E  .  On 

substituting  ,x y  values in (7) we get the Jacobian matrix for 0E   
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Hence the Eigen values of the matrix are 1 2 0= ,  =                        a q E     

Thus it is clear that by Theorem, 0E  is sink point if  
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And also 0E  is saddle point if 1 2| | 1,  | | 1  
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Proposition 2:  The fixed point 
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Proof:  One can easily see that the Jacobian matrix at 1E  is 

2 2

1

02 2
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Hence the Eigen values of the matrix are  
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By using Theorem, it is easy to see that,  1E  is a sink if
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1E  is a source if 
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Remark 2:  If
2

2 2( ) ( ) 0Tr J Det J    , then the necessary and sufficient condition for linear stability 

are 2 2( ) 0  and  ( ) 0Tr J Det J  . 

 

IV. LOCAL STABILITY AND DYNAMIC BEHAVIOUR AROUND  

INTERIOR FIXED POINT 2E  

Now we investigate the local stability and bifurcations of interior fixed point 2E .  The Jacobian matrix at 2E  is 

of the form  
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Its characteristic equation is  
2

2 2( ) ( ) ( ) 0F Tr J Det J       where Tr is the trace and Det  is the 

determinant of the Jacobian matrix 2( )J E  defines in Eq.(8), (by Lemma) where 
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By Remark 2,  2E  is stable if 1 2 0    and 1 2 3. 0     that is on solving we get, 
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2E  is stable if 

   
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0 0
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and 

 

 
   

      

2

2
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2 2 * * ***
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(10) 

If both equations (9) and (10) are satisfied, then the interior equilibrium point will be stable. 

 

V. NUMERICAL SIMULATION 
 The global dynamical behaviour of the non-linear model system (3) in 

the positive octant is investigated numerically.  Under the bifurcation analysis of the model (3), very rich and 

complex behaviours are observed, presenting various sequences of period-doubling bifurcation leading to 

chaotic dynamics or sequences of period-halving bifurcation leading to limit cycles. 

 The prey-predator system (3) with the effect of harvested predator species on a Holling type IV 

functional response, intra-specific competition exhibits a variety of dynamical behaviour in respect of the 

population size.  We first plotted the diagrams for the prey system with various intrinsic growth rates.  The 

Fig.(1) shows that stabilized prey density first bifurcates 2 cycles, 4 cycles, forms a little chaos and then forms 

chaotic band with intrinsic prey growth rate 0 to 4 in the absence of the predator.  That is, period-doubling 

bifurcation leading to chaotic dynamics.  Next we introduce predator, then for various predator values. 

 

 
Fig. (1)  

 a=0 to 4, b=0.2,  =0.5, m=0.75 in the absence of predator 

 Fig.(2)-(4) shows the prey growth rates bifurcates 2 cycles, 4 cycles and then settles down to a stable fixed 

point.  
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Fig. (2)  

 a=0 to 4, b=0.2,  =0.5, m=0.75 and 

y=7 

Fig. (3)  

 a=0 to 4, b=0.2,  =0.5, m=0.75 and 

y=9 

Fig. (4)  

 a=0 to 4, b=0.2,  =0.5, m=0.75 and 

y=10 

Fig.(5) shows prey growth rate which leads to period-halving bifurcation leading to limit cycles. 

 
Fig. (5)  

 a=0 to 4, b=0.2,  =0.5, m=0.75and y = 13 

 

 

 Next we generated the bifurcation diagrams for predator growth rate with immunity.  For various immunity 

parameter values, m = 0 to 5 and various values of prey x , harvesting effort E  and catchability coefficient 0q , 

Fig.(6)-(8) shows that the predator growth rate bifurcates 2 cycles and settles down to a stable fixed point.   
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Fig. (6)  

 m=0 to 5, e=0.4, =0.5, x =0.5, 

 
y =5, 0q =0.5 and E =1.5 

Fig. (7)  

m=0 to 5, e=0.4, =0.5, x =10, 

 
y =5, 0q =0.5 and E =1.5 

Fig. (8)  

 m=0 to 5, e=0.4, =0.5, x =1.5, 

 
y =5, 0q =0.5 and E =2 

 

Fig.(9) and Fig.(10) shows clearly the evidence of the route to chaos through the cascade of period-halving 

bifurcation respectively for the prey values x =1.5 and x =6. 

 
 

Fig. (9)  

m=0 to 5, e=0.4, =0.5, x =1.5, 

 
y =5, 0q =0.5 and E =3 

  

Fig. (10)  

 m=0 to 5, e=0.4, =0.5, x =6, 

 
y =5, 0q =0.5 and E =3 

 The above plots have been generated by using MATLAB 7 software. 

 

VI. CONCLUSION 
In this paper, we have investigated the complex behaviours of two species prey- predator system as a 

set of differential equations  with the effect of harvested predator species on a Holling type IV functional 

response and intra-specific competition in the closed first quadrant, and showed that the unique positive fixed 

point of system (3) can undergo bifurcation and chaos.  Bifurcation diagrams have shown that there exists much 

more interesting dynamical and complex behaviour for system (3) including periodic doubling cascade, periodic 

windows and chaos. All these results showed that for richer dynamical behaviour of the prey-predator 

differential equation model (3) under periodical perturbations compared to the difference equation model.  The 

system is examined via the techniques of local stability analysis of the equilibrium points from which we obtain 

the bifurcation criterion.   

The numerical simulation of the population size shows a succession of period-doubling bifurcations 

leading up to chaos.  That is from Fig. (1)-(10), we observed the period-doubling route to chaos for the intrinsic 

growth of prey population parameter and period-halving route to limit cycle for the strength of immunity growth 
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rate among the predator species with harvesting effort and catchability coefficient.  Thus it is observed that even 

a small variation in parameters a
 
with zero predators and m  with e

 
and 

0q  may cause a shift form limit 

cycles to chaos and vice-versa respectively.  This study gives support to the view that two species prey-predator 

model with a system of differential equations are able to generate unpredictable and complex behaviour with 

small perturbations in parameters. 
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