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Abstract:- In this paper we subject the coefficients of a polynomial and their real and imaginary parts to certain 

conditions and give bounds for the number of zeros in a ring-shaped region. Our results generalize many 

previously known results and imply a number of new results as well. 
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I. INTRODUCTION AND STATEMENT OF RESULTS 
A large number of research papers have been published  so far on the location in the complex plane of 

some or all of the zeros of a polynomial in terms of the coefficients of the polynomial or their real and 

imaginary parts. The famous Enestrom-Kakeya Theorem [5] states that  if the coefficients of the polynomial 

j
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0

)( satisfy nn aaaa  110 ......0 , then all the zeros of P(z) lie in the closed  disk 

1z .  

By putting a restriction on the coefficients of a polynomial similar to that of the Enestrom-Kakeya Theorem, 

Mohammad [6] proved the following result: 

Theorem A: Let 
j
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0

)( be  a polynomial such that nn aaaa  110 ......0 . Then the 

number of zeros of P(z) in 
2

1
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1
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a
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For polynomials with complex coefficients, Dewan [1] proved the following results: 

Theorem B: Let 
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                       ,,.....,2,1,0,
2

arg nja j 


  

for some real  and   and 

                       nn aaaa  110 ......0 . 

Then the number of zeros of P(z) in 
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1
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Theorem C: Let 
j
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)(  b e a polynomial of degree n with jja )Re( , 

nja jj ,......,2,1,0,)Im(    such that 

                         nn   110 ......0 . 
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Then the number of zeros of P(z) in 
2

1
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Recently  Gulzar [3,4] proved the following  results: 

Theorem D: Let 



n
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j zazP
0

)( be a polynomial of degree n such that for some 1,1  ok  and for 

some integer 10,  n , 

                          01111 ............     knn . 

Then P(z) has no zero in  
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a
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Theorem E: Let 
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0

)( be a polynomial of degree n such  that  for some  

 real nja j ,......,2,1,0,
2

arg;, 


  and  for some 1,1  ok  and  some integer 

10,  n , 

                          01111 ............ aaaakaaa nn    . 

Then P(z) has no zeros in 
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Theorem F: Let 
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jja )Re(  ,  

nja jj ,......,1,0,)Im(     such that for some 10,1,1 21  kk , 

                   012121 ......    nnn kk  
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Theorem G: Let 
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)( be a polynomial of degree n such that for some 10,1,1 21  kk , 

                   012121 ...... aaaakak nnn   . 
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Then P(z) has no zero in  
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2

1

00 sin2)1sin(cos
n

j

jaaa  . 

In this paper, we prove the following results: 
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some integer 10,  n , 

                          01111 ............     knn . 
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for 1R . 

  Combining Theorem 1 and Theorem D, we get a bound for the number of zeros of P(z)  in   a ring-shaped  

region as follows: 

Corollary 1: Let 
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Theorem 2: Let 
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)( be a polynomial of degree n such  that  for some  
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 real nja j ,......,2,1,0,
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  and  for some 1,1  ok  and  some integer 
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                          01111 ............ aaaakaaa nn    . 

Then the number of zeros of P(z) in )1,0(  cR
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Combining Theorem 2 and Theorem E, we get a bound for the number of zeros of P(z)  in   a ring-shaped  

region as follows: 

Corollary 2: Let 
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Theorem 3: Let 



n

j

j

j zazP
0

)( be a polynomial of degree n with jja )Re(  ,  

nja jj ,......,1,0,)Im(     such that for some 10,1,1 21  kk , 

                   012121 ......    nnn kk  

Then the number of zeros of P(z) in )1,0(  cR
c
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z  does not exceed 
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for 1R  .   

 Combining Theorem 3 and Theorem F, we get a bound for the number of zeros of P(z)  in   a ring-shaped  

region as follows: 

 Corollary 3:  Let 
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Theorem 4: Let 
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Combining Theorem 4 and Theorem G, we get a bound for the number of zeros of P(z)  in   a ring-shaped  

region as follows: 

Corollary 4:  Let 
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for 1R , where 

                )cos1()1cos(sin)1sin(cos 11214    nnn aakakM  

                          00 )1sin(cos aa   . 

For different values of the parameters in the above results, we get many interesting results including 

generalizations of some well-known results. 

 

II. LEMMAS 
For the proofs of the above results, we need the following results: 

Lemma 1: Let Czz 21, with 21 zz   and 2,1,
2

arg  jz j


  for some real numbers 

 and  . Then 

                             sin)(cos)( 212121 zzzzzz  . 

The above lemma is due to Govil and Rahman [2]. 

Lemma 2: Let F(z) be analytic in Rz  , MzF )( for Rz  and 0)0( F . Then  

 for c>1,  the number of zeros of F(z) in the disk 
c

R
z   does not exceed 

                      

0

log
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1

a

M

c
. 

For the proof of this lemma see [7]. 

                               

III. PROOFS OF THEOREMS 
Proof of Theorem 1: Consider the polynomial 

F(z)=(1-z)P(z)  
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Hence, by Lemma 2, it follows that the number of zeros of F(z) in 1,  c
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for 1R . 

Since the zeros of P(z) are also the zeros of F(z), the proof of Theorem 1is complete. 

Proof of Theorem 2: Consider the polynomial 

F(z)=(1-z)P(z)  
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Since the zeros of P(z) are also the zeros of F(z), Theorem 2 follows. 

 Proof of Theorem 3:  Consider the polynomial  
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Since the zeros of P(z) are also the zeros of F(z), Theorem 3 follows. 

Proof of Theorem 4:  Consider the polynomial  
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Since the zeros of P(z) are also the zeros of F(z), Theorem 4 follows. 
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