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Abstract:-Civil structures are susceptible to damages over their service lives due to aging, environmental 

loading, fatigue and excessive response. Such deterioration significantly affects the performance and safety of 

structure.  Therefore, it is necessary to monitor the structural performance, detect and assess damages at the 

earliest possible stage in order to reduce the life-cycle cost of structure and improve its reliability.Recently, 

signal-based methods have been widely used for structural health monitoring and damage detection.  These 

methods examine changes in the features derived directly from the measured time histories or their 

corresponding spectra through proper signal processing methods and algorithms to detect damage.Based on 

different signal processing algorithms for feature extraction, these methods are classified into time-domain 

methods, frequency-domain methods, and time-frequency (or time-scale)-domain methods.This paper provided 

an overview of these methods based on two aspects: (1) feature extraction algorithms, and (2) successful 

applications.  Signal-based methods are particularly more effective for structures with complicated nonlinear 

behaviour and the incomplete, incoherent, and noise-contaminated measurements of structural response.  
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I. INTRODUCTION 
Deterioration of structures due to aging, cumulative crack growth or excessive response decreases their 

stiffness and integrity, and therefore significantly affects the performance and safety of structures during their 

service life.  Structural Health Monitoring (SHM) and damage detection denotes the ability to monitor the 

performance of structure, detect and assess any damage at the earliest stage in order to reduce the life-cycle cost 

of structure and improve its reliability and safety.Fig. 1 shows a brief classification of different damage 

detection categories, methods and basic algorithms. 

Recent advances in computer, sensors and other electronic technologies make Non-destructive Damage 

Detection (NDD) techniques far more convenient and cost effective than destructive detection techniques which 

usually evaluate the safety of a structure by testing samples removed from the structure.  NDD techniques can 

be classified into two categories: (1) local methods; and (2) global methods.  

Current highly effective localized NDD methods include acoustic or ultrasonic methods, magnetic field 

methods, radiograph, microwave/ground penetrating radar, fiber optics, eddy-current methods and thermal field 

methods.  These methods are visual or localized experimental methods that detect damage on or near the surface 

of the structure by measuring light, sound, electromagnetic field intensity, displacements, or temperature.Some 

of these methods are particularly effective for a specific application. For example, eddy current is very effective 

for crack detection at welded joint. But these methods have several limitations when testing large and complex 

structures. First, the depth of wave penetration is limited.  Second, the vicinity of the damage should be known 

and the portion of the structure being inspected should readily be accessible.  However, there is no easy way to 

determine the global health condition of a structure.  Chang and Liu [1] provided detailed information about 

“local” methods. 

Static-based and vibration-based NDD methods provide the opportunity to detect and assess damage on 

a global basis.  Static-based methods rely on the strain or displacement measurements from a structure under 

known static loads and the finite-element model updating to determine changes in deflection, stiffness, and load-

carrying capacity of the structure.  These methods are widely used for bridge health monitoring and evaluation.  

Examples of such work are Barr et al. [2] and Cardinale and Orlando [3].  The drawbacks of static-based NDD 

methods are: (1) they require a large amount of measured data; (2) they require the finite-element model 

updating using accurate material properties; (3) they require static-load tests which will interrupt the structure 

service.  These drawbacks will make static-based NDD methods more difficult for online damage detection of 

an in-service structure.  Vibration-based NDD methods rely on the change of vibration characteristics and 

signals as indication of damage due to the reason that the damage changes the physical properties of a structure, 

which in turn will cause changes to the vibration characteristics and signals of the structure.Over the last two 
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decades, extensive research has been conducted on Vibration-based detection approach, leading to various 

experimental techniques, methodologies, and signal processing algorithms.  Doebling et al. [4] and Sohn et al. [5] 

presented comprehensive literature reviews of vibration based damage detection and health monitoring methods 

for structural and mechanical systems.  These methods can be classified into either modal-based or signal-based 

categories. 

 

 
Fig.1:SHM and damage detection categories 

 

Modal-based methods use changes in measured modal parameters (resonant frequencies, modal 

damping, mode shapes, etc.) or their derivatives as a sign of change in physical-dynamic properties of the 

structure (stiffness, mass and damping). The basic premise behind the methods is that a change in stiffness leads 

to a change in natural frequencies and mode shapes.  Modal-based methods have been applied successfully to 

identify the dynamic properties of linearized and time-invariant equivalent structural systems.  The methods 

include mode shape curvature method, the change in flexibility method, the change in stiffness method, modal 

strain energy, etc.  Examples of such work are Kosmatka and Ricles [6], Ren and Roeck [7], Shi et al. [8] and 

Kim et al. [9].  Recently, wavelet-based and Hilbert-based approaches have been developed as enhanced 

techniques for parametric identification of non-linear and time-variant systems.  Examples of such work are 

Staszewski [10], Kijewski and Kareem [11], Yang et al. [12], Huang et al. [13], Hou et al. [14], Chen et al. [15] 

and Yan and Miyamoto [16].  Although modal-based methods are generally applicable for the purpose of 

damage detection and structural health monitoring, they still have many problems and challenges: (1) damage is 

a local phenomenon and may not significantly influence modal parameters, particularly for large structures; (2) 

variation in the mass of the structure or environmental noise may also introduce  uncertainties in the measured 

modal parameters; (3) the number of sensors, the types of sensors, and the coordinates of sensors may have a 

crucial effect on the accuracy of the damage detection procedure.  

Signal-based methods examine changes in the features derived directly from the measured time 

histories or their corresponding spectra through proper signal processing methods and algorithms to detect 

damage. Based on different signal processing algorithms for feature extraction, these methods are classified into 

time-domain methods, frequency-domain methods, and time-frequency (or time-scale)-domain methods.  Time-

domain methods use linear and nonlinear functions of time histories to extract the signal features. Examples of 

this category are Auto-Regressive (AR) model, Auto-Regressive Moving Average (ARMA) model, Auto-

Regressive with eXogenous input (ARX) model and Extended Kalman Filter (EKF).  Frequency-domain 

methods use Fourier analysis and cepstrum (the inverse Fourier transform of the logarithm of the Fourier spectra 

magnitude squared) analysis to extract features in a given time window.  Examples of this category are 

Frequency Response Functions (FRFs), frequency spectra, cross power spectra, power spectra, and power 



Signal-Based Damage Detection Methods – Algorithms and Applications 

46 

spectral density.Time-frequency domain methods employ Wigner-Ville distribution and wavelet analysis to 

extract the signal features. Examples of this category are spectrogram, continuous wavelet transform coefficients, 

wavelet packet energies and wavelet entropy.Detailed descriptions of these feature extraction algorithms and 

successful applications for damage detection were discussed in this paper.  

 

II. SIGNAL-BASED DAMAGE DETECTION 
Recently, signal-based damage detection methods have received many attentions. These methods 

involve two main processes: (1) feature extraction and selection, and (2) pattern recognition. Feature extraction 

and selection is the process of identifying and selecting damage-sensitive features derived from the measured 

dynamic response, to quantify the damage state of the structure.  A variety of algorithms are employed to 

improve the feature extraction and selection procedure.  Based on different signal processing algorithms for 

feature extraction, these methods are classified into time-domain methods, frequency-domain methods, and 

time-frequency methods. 

 

A. Time-Domain Methods 

Time-domain methods use linear and nonlinear functions of time histories to extract features. Sohn et 

al. [17] used an auto-regressive (AR) model to fit the measured time history on a structure.  Damage diagnoses 

using X-bar control chart were performed using AR coefficients as damage-sensitive features. In 

the𝐴𝑅(𝑛)model, the current point in a time series is modeled as a linear combination of the previous 𝑛 points. 
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wherex(t)  is the time history at time t; ϕj  is the unknown AR coefficient; and ex (t)  is the random error with 

zero mean and constant variance.  The value of ϕj  is estimated by fitting the AR model to the time history data. 

The AR coefficients of the model fit to subsequent new data were monitored relative to the baseline AR 

coefficients. The X-bar control chart was used to provide a framework for monitoring the changes in the mean 

values of the AR coefficients and identifying samples that were inconsistent with the past data sets. A 

statistically significant number of AR coefficients outside the control limits indicated that the system was 

transited from a healthy state to a damaged state. Principal component analysis and linear and quadratic 

projections were applied to transform the time series from multiple measurement points into a single time series 

in an effort to reduce the dimensionality of the data and enhance the discrimination between features from 

undamaged and damaged structures. For demonstration, the authors applied the AR model combined with X-bar 

control chart to determine the existence of damage on a concrete bridge column as the column was progressively 

damaged. The AR coefficients on the X-bar control chart as detailed in the method indicated the damage 

existence.  

Sohn and Farrar [18] proposed a two-stage time history prediction model, combining auto-regressive 

(AR) model and an autoregressive with exogenous inputs (ARX) model.  The residual error, which was the 

difference between the actual acceleration measurement for the new signal and the prediction obtained from the 

AR-ARX model from the reference signal, was defined as the damage-sensitive feature. The increase in residual 

errors was monitored to detect system anomalies. In this method, the ARX model is expressed as  
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where a and b are the order of the ARX model; αi and βj  are the coefficients of the AR and the exogenous input, 

respectively; εx(t) is the residual error after fitting the ARX(a, b) model to the ex (t) and x(t) pair in the one-

stage ahead AR model. If the ARX model obtained from the reference signal block pair x(t) and ex (t) were not 

be a good representation of the newly obtained block pair y(t) and ey (t), there would be a significant change in 

the residual error, εy (t), compared to εx(t).  The standard deviation ratio of the residual errors, σ(εy ) σ εx   , 

would reach its maximum value at the sensors instrumented near the actual damage locations. The applicability 

of this approach was demonstrated by the authors using acceleration time histories obtained from an eight 

degree-of-freedom mass-spring system. Sohn et al. [19] developed a unique combination of the AR-ARX model, 

auto-associative neural network, and statistical pattern recognition techniques for damage classification 

explicitly taking the environmental and operational variations of the system in the consideration. In this method, 

AR-ARX model is developed to extract damage sensitive features, which are the αi andβj  coefficients of the 

ARX model. An auto-associative neural network is trained to characterize the dependency of the extracted 

features on the variations caused by environmental and operation conditions. A damage classifier is constructed 

using a sequential probability ratio test to automatically determine the damage condition of the system. The 

authors demonstrated the proposed approach using a numerical example of a computer hard disk and an 

experimental study of an eight degree-of-freedom spring-mass system.  
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Bodeux and Golinval [20] applied the autoregressive moving average vector (ARMAV) model and 

statistical tools such as confidence interval and the normal distribution of random variable for damage detection. 

In the state space, the ARMAV model is expressed as 

     1x n Ax n W n   (3)  

Where x[n]  is the observed vibration vector at the n th discrete time point; A  is the matrix containing the 

different coefficients of the autoregressive (AR) part; W[n] is a matrix containing the moving average (MA) 

terms. The natural eigenfrequenciesfr  and damping ratios ζr  can be extracted from the eigenvalues τr  of the AR 

matrix A as 
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whereΔt is the discrete time interval.  The authors used the changes in the frequencies estimated by the ARMAV 

model to detect the damage on the Steel-Quake structure at the Joint Research Center in Ispra, Italy. The 

frequencies were assumed to be independently distributed variables and a negative change in frequencies 

indicated damage caused by structure change. As damage indicator, the probability of negative change Pδfi
 in 

frequency fi  is given by 
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Where σi
2 and σi0

2  are the variances of the frequencies fi  and fi0 corresponding to the damaged and undamaged 

states. Φis the unit normal distribution function.  The structure was assumed damaged if the probability was 

close to one. The proposed method was limited to only detecting the damage existence. 

Nair et al. [21] applied an Auto-Regressive Moving Average (ARMA) model for damage identification 

and localization.  A damage-sensitive feature, DSF, was defined as a function of the first three auto regressive 

(AR) components.  The mean values of the DSF obtained from the damaged and undamaged signals were 

significantly different. In this method, the vibration signals obtained from sensors are modeled as ARMA time 

series as 
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Where xij (t)  is the normalized acceleration signal; φk  and θk  are the k-th AR (Auto-Regressive) and MA 

(Moving Average) coefficients, respectively; p  and q  are the model orders of the AR and MA processes, 

respectively; and εij (t) is the residual term. DSF is defined as 

1
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where α1 , α2  and α3  are the first three AR coefficients. A hypothesis test involving the t-test was used to 

determine the existence of damages on the structure. Two indices, LI1and LI2, were introduced based on the AR 

coefficient space to localize damages. At the sensor locations where damage was introduced,  LI1 and LI2had 

comparatively large values.The authors tested the proposed methodologies on the analytical and experimental 

results of the ASCE benchmark structure. The results of the damage detection indicated that DSF was able to 

detect the existence of all damage patterns in the ASCE Benchmark simulation experiment. The results of the 

damage localization indicated that LI1 and LI2 were all able to localize minor damages but LI1 was more robust 

than LI2. 

Liu et al. [22] presented a damage sensitive feature index for damage detection based on Auto-

Regressive Moving Average (ARMA) time series analysis. The acceleration signal was modeled as ARMA 

models, and a principal component matrix derived from the AR coefficients of these models was utilized to 

establish the Mahalanobis distance criterion function. The Mahalanobis-distances of m-dimensional vector xi 

from the principal component matrix of damaged structure to the ones of undamaged structure were defined as 

the damage sensitive feature (DSF) index.  It is expressed as 

   
1

1 2T

DSFD x x    
 

(9) 

Where μ and Σ are mathematics expectation and covariance matrices of the m-dimensional vector from the 

principal component matrix of undamaged structure, respectively. A hypothesis test involving the t-test method 

was further applied to make a damage alarming decision by determining the statistical significance in the 

difference of mean values of DDSF  obtained from the damaged and undamaged cases. These methodologies were 

tested on a numerical three-span-girder beam model containing some subtle damages. The results show that the 
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defined index is sensitive to these subtle structure damages, and the proposed algorithm can be applied to the 

on-line damage alarming in structural health monitoring. 

 

B. Frequency-Domain Methods 

Frequency-domain methods analyze any stationary event localized in time domain.  They use Fourier 

analysis, cepstrum (the inverse Fourier transform of the logarithm of the Fourier spectra magnitude squared) 

analysis, spectral analysis, frequency response technique, etc to extract features in a given time window. Tang et 

al. [23] quantitatively diagnosed gear-wear through cepstrum analysis of gear noise signals. The amplitude value 

of the peak in cepstrum represented gear mesh-harmonics in spectrum. The trend of the change of gear-wear 

degree was about the same as that of the change of the value of a peak in cepstrum.  The value was independent 

of intensity of gear noise signal and was used as an indicator for quantitatively diagnosing gear-wear. Based on 

analyzing the results of experiments with gearboxes, the thresholds of the gear wear by cepstrum diagnosis was 

determined to distinguish normal, moderate and serious wears. The theoretical analysis agreed with the 

experimental results very well.  

Kamarthi and Pittner [24] presented sensor data representation schemes for flank wear estimation in 

turning processes. The sensor data representation algorithm based on fast Fourier transform (FFT) transformed a 

time series vector X of the sensor signal from turning experiments into the spectral vector x , and then formed 

the vector x f  with the set  i1, i2 , … , id .  The features xr  , the d-dimensional sensor data representation of X, was 

computed through the relation 

1 2/
fr wx S x (10) 

The features were used by recurrent neural network architecture to continually compute the flank wear estimates. 

Lee and Kim [25] used the frequency analysis to detect and localize damage. A signal anomaly index 

(SAI) which quantified the change of frequency response was developed as damage feature.  The SAI is defined 

as a Euclidean norm of the difference between two frequency response function (FRFs) of basis and compared 

state as 
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where, H( )  and FRF represent the frequency response function in continuous form and discrete form 

respectively, superscript B and C stand for the state of Basic and Compared. The symbols, f1  and fn  are the 

lowest and highest frequency of the considering frequency range, respectively. Changes in the shape of the FRF 

due to the reason of structural damage caused the increase of SAI value. The presence of damage was identified 

from the SAI value. All SAI values calculated from different sensors and different frequency ranges formed a 

SAI matrix which showed variation patterns of the FRF in both the space and the frequency domain. The SAI 

matrix was used as input for the neural network to identify the location of damage. The authors conducted a 

series of experimental tests and numerical simulation on an experimental model bridge to demonstrate the 

feasibility of the proposed algorithm. The results of this example application show that the SAI based pattern 

recognition approach has the great potential for structural health monitoring on a real bridge. 

Fasel et al. [26] used a frequency domain auto-regressive model with exogenous inputs (ARX) to 

detect joint damage in steel moment-resisting frame structures. Damage sensitive features were extracted from 

the ARX model in the consideration of non-linear system input/output relationships. A frequency domain ARX 

model was used to predict the response at a particular frequency based on the input at that frequency, as well as 

responses at surrounding frequencies. The responses at the surrounding frequencies were included as inputs to 

the model to account for sub-harmonics and super-harmonics introduced to the system through non-linear 

feedback. To accounts for non-linearity in the system, first-order ARX model in the frequency domain is built as 

             1 11 1Y k B k U k A k Y k A k Y k     2 3 1fk , ,...,N  (12) 

where Nf  is the highest frequency value examined, Y(k) is the response at the k-th frequency, U(k) is the input 

at the k-th frequency, and Y(k − 1) and Y(k + 1) are the responses at the (k-1)th and (k+1)th frequencies, 

respectively.A1(k)andA−1(k) are the frequency domain auto-regressive coefficients, and B(k) is the exogenous 

coefficient. The frequency response of one accelerometer was treated as an input and the other accelerometer 

response was treated as an output. The auto-regressive coefficients in this frequency domain model were used as 

features. These features were then analyzed using extreme value statistics (EVS) to differentiate between 

damage and undamaged conditions. The suitability of the ARX model, combined with EVS, to non-linear 

damage detection was demonstrated on a three-story building model. 

Qiao et al. [27, 28] noted that in the Fast Fourier Transform (FFT) spectrums of acceleration signals of 

the structure under different damage scenarios, the peak magnitude changes were more sensitive than the peak 

frequency shifts. The authors selected the FFT magnitude vectors in frequency domain as the sensitive features 

which also preserved the information of frequency shifting, forming a one-dimension pattern, presenting a 
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unique damage condition. In order to separate the feature changes caused by operational and environmental 

variations of the system from the structure changes of interest, each magnitude vector in a pattern was 

normalized with respect to the square root of the sum of square of the corresponding pattern. The dynamic 

response patterns of a damaged structure were compared with a wide range of numerically generated damaged 

cases stored in a pattern database to detect damage severity and location. To demonstrate the feasibility of the 

proposed method, numerical and experimental studies were conducted on a simple three-story steel building. 

The results showed that the FFT patterns were successfully used as sensitive features for damage detection.   

 

C. Time-Frequency (or Scale)-Domain Methods 

In contrast to the frequency-domain methods, the time-frequency (or scale) methods can be used to 

analyze any non-stationary event localized in time domain. Staszewski et al. [29] applied the Wigner-Ville 

distribution (WVD) to detect local tooth faults in spur gears. The authors showed that the visual observation of 

the WVD contour plots could be used for fault detection. Dark zones and curved bands in the contour plots were 

the main features of an impulse produced by the fault in the spur gear.  The changes in features of the 

distribution were used to monitor the progression of a fault. For the sake of automatic fault detection, the 

authors chose the two-dimensional contour plots of the WVD as patterns, and the amplitude values of the 

contour plots as features.  Pattern recognition procedures based on the statistical and neural approaches were 

used for classification of different fault conditions.  

Biemans et al. [30] employed the orthogonal wavelet analysis of the strain data measured from 

piezoceramic sensors to detect crack growth in the middle of a rectangular aluminum plate. The strain data 

measured from the plate under the Gaussian white noise excitation was decomposed into orthogonal wavelet 

levels.  The logarithm of the variance of the orthogonal wavelet coefficients was calculated for all wavelet levels. 

The mean vector μ , of the logarithms for the undamaged plate formed the template for the similarity analysis.  A 

Euclidean distance between the template μ  and the logarithms x , for the damaged plate was used as a damage 

index.  The damage index is denoted as 

   2
T

x,d x x    (13) 

The mean and standard deviation of the damage index representing the undamaged condition of the 

plate were used to establish an alarm level. The damage could be considered existence in the plate if the damage 

index was above the alarm level. The experimental results on the aluminum plate show that such damage index 

can be used to successfully detect as small as 6-7mm crack and to monitor the crack growth.  

Hou et al. [31] presented the great potential of wavelet analysis for singularity extraction in the signals. 

Characteristics of four types of representative vibration signals were examined by continuous and discrete 

wavelet transforms. The singularity in these signals were extracted and best illustrated in the plot of wavelet 

coefficient in the time-scale plane.  The fringe pattern in the continuous wavelet coefficient contour plot 

indicated the existence of a singularity in the local time and the spike in the discrete wavelet coefficient plot also 

indicated the existence of a singularity in the local time. The sensitivity of wavelet results to a singularity was 

effectively used to detect possible structural damage using measured acceleration response data. To demonstrate 

the feasibility of the proposed method, the authors used both numerical simulation data from a simple structural 

model with multiple paralleled breakable springs and actual acceleration data recorded on the roof of a building 

during an earthquake event. The detection results showed that occurrence of damage could be detected by spikes 

in the detailed of the wavelet decomposition of the response data, and the locations of these spikes could 

accurately indicate the moments when the damage occurred. The similar work can also be found on Hera and 

Hou [32], Ovanesova and Suarez [33], Melhem and Kim [34] and Qiao et al. [35]. 

Kim and Kim [36] used the ratio of the incident wave toward and the reflected wave from the damage 

as index to assess the damage size. The ratio was estimated by the continuous wavelet transform of the 

measured signal and the ridge analysis. In the time-frequency plane of the continuous wavelet transform, the 

ridge was traced to compare the magnitude of the incident wave and the magnitude of the reflected wave from 

the damage. It was found that the ratio of these magnitudes along the two ridges was the same as the ratio of the 

magnitude of the incident wave to the magnitude of the reflected wave. Due to the fact that the magnitude and 

frequency-dependent pattern of the ratio varied with damage size, it was able to correlate the ratio and the 

damage size except when the damage size was very small. The authors conducted the wave experiments in a 

cylindrical ferromagnetic beam. Magnetostrictive sensors were used to measure the bending waves in the beam 

cross section. The continuous Gabor wavelet transform was employed to estimate the crack size in the beam.  

Yen and Lin [37] investigated the feasibility of applying the Wavelet Packet Transform (WPT) to 

detect and classify the mechanical vibration signals. They introduced a wavelet packet component energy index 

and demonstrated that the wavelet packet component energy had more potential for use in signal classification 

as compared to the wavelet packet component coefficients alone.  The component energy is defined as 
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wherefj
i(t) is the ith component after j levels of decomposition. Sun and Chang [38] applied the wavelet packet 

component energy index to assess structural damage.  The vibration signals of a structure were decomposed into 

wavelet packet components. The component energies were calculated and the ones which were both significant 

in value and sensitive to the change in rigidity were selected as damage indices and then used as inputs into 

neural network models for damage assessment. The authors performed numerical simulations on a three-span 

continuous bridge under impact excitation. Various levels of damage assessment including identifying the 

occurrence, location, and severity of the damage were studied. The results show that the WPT-based component 

energies are sensitive to structural damage and can be used for various levels of damage assessment.  

Sun and Chang [39] also derived two damage indicators from the WPT component energies. The 

acceleration signals of a structure excited by a pulse load were decomposed into wavelet packet components. 

The energies of these wavelet packet components were calculated and sorted by their magnitudes. The dominant 

component energies which were highly sensitive to structural damage were defined as the wave packet signature 

(WPS).  Two damage indicators, SAD (sum of absolute difference) and SSD (square sum of difference), were 

then formulated to quantify the changes of these WPSs.  SAD and SSD are defined as 
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whereE j
i  (i = 1,2, … , m) are termed as the baseline WPS that are used as a reference; and Ej

i  (i = 1,2, … , m) are 

WPS obtained from any subsequent measurement. These two indicators basically quantified the deviations of 

the WPS from the baseline reference. To monitor the change of these damage indicators, the X-bar control 

charts were constructed and one-sided confidence limits were set as thresholds for damage alarming. For 

demonstration, the authors conducted an experimental study on the health monitoring of a steel cantilever I 

beam. Four damage cases, involving line cuts of different severities in the flanges at one cross section, were 

introduced. Results show that the health condition of the beam can be accurately monitored by the proposed 

method; the two damage indicators are sensitive to structural damage and yet insensitive to measured noise. 

Yam et al. [40] constructed a non-dimensional damage feature proxy vector for damage detection of 

composite structures. The damage feature proxy vector was calculated based on energy variation of the wavelet 

packet components of the structural vibration response before and after the occurrence of structural damage. The 

damage feature proxy vector, Vd  is defined as 
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where UL,j
0  and UL,j

d  are the energy of the jth order sub-signal of the intact and damaged structures, respectively; 

L is the layer number of the tree structure of wavelet decomposition.  Artificial neural network (ANN) was used 

to establish the mapping relationship between the damage feature proxy and damage location and severity.  The 

method was applied to crack damage detection of a PVC sandwich plate. The results show that the damage 

feature proxy exhibits high sensitivity to small damage. 

Han et al. [41] proposed a damage detection index called wavelet packet energy rate index (WPERI) 

for the damage detection.  The rate of signal wavelet packet energy Δ(Ejj
)  at j level is defined as 
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where E
fj
i  is the energy stored in the component signal fj

i(t)  after j  levels of decomposition; (E
fj
i )a  is the 

component signal energy E
fj
i  at j level without damage; and (E

fj
i )b  is the component signal energy E

fj
i  with some 

damage. It was assumed that structural damage would affect the energies of wavelet packet components and 

therefore altered this damage indicator. To establish threshold values for damage indexes, WPERIs, X-bar 

control charts were constructed and one-sided confidence limits were set as thresholds for damage alarming. 

The proposed method was applied to a simulated simply supported beam and to the steel beams with three 

damage scenarios in the laboratory. Both simulated and experimental studies demonstrated that the WPT-based 

energy rate index is a good candidate index that is sensitive to structural local damage. 
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Diao et al. [42] proposed a two–step structural damage detection approach based on wavelet packet 

analysis and neural network.  The wavelet packet component energy change γsi  was selected as an input into 

probabilistic neural network to determine the location of the damage. The γsi  is defined as 
d u

si si
si u

si

E E

E


  (19) 

whereEsi
u  is the ith component energy at s level without damage, Esi

d  is the ith component energy at s level with 

damage. The component energy was selected as input into back-propagation network to determine the damage 

extent. The method was demonstrated by numerical simulation of a tree-dimensional four-layer steel frame. 

Chen et al. [15] introduced an improved Hilbert-Huang Transform (HHT) to extract the structural 

damage information from the response signals of a simulated composite wingbox. The signals was firstly 

decomposed into sub-signals using Wavelet Packet Transform (WPT).  These sub-signals were then 

decomposed into multiple Intrinsic Mode Function (IMF) components by Empirical Mode Decomposition 

(EMD). The IMF selection criterion was then applied to eliminate the unrelated IMF components. The retained 

IMF components were transformed using HHT to obtain instantaneous energy of all sub-signals. By comparing 

the instantaneous energy corresponding to IMFs of intact wingbox with those of damaged wingbox, it was 

found that some instantaneous energy was changed obviously. Based on this fact, the authors constructed the 

variation quantity of instantaneous energy ΔEt  as feature index vector, which is defined as 
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whereEt
0 and Et  are instantaneous energy of intact and damaged structure respectively at time t.  Reduction in 

Young‟s modulus was used to characterize damage in wingbox.  The detection results show that the feature 

index vector distinctly reflects the wingbox damage status, and is more sensitive to small damage. 

Ding et al. [43] developed a procedure for damage alarming of frame structures based on energy 

variations of structural dynamic responses decomposed by wavelet packet transform. The damage alarming 

index ERVD, extracted from the wavelet packet energy spectrum is expressed as 
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where Iup  and Idp  are the damage indication vector in the pth dominant frequency band of the intact and 

damaged structures, respectively. Ei,j is the j th component energy at l  level. The authors demonstrated the 

practicability of the damage alarming method for the frame structures by using the ASCE structural benchmark 

data. The results reveal that the WPT-based damage alarming index ERVD is sensitive to structural local 

damage affected by the actual measurement noise; the index ERVD constructed under the lower decomposition 

level and dominant frequency bands is efficient for the detection of the damage occurrence.  

Ren and Sun [44] combined wavelet transform with Shannon entropy to detect structural damage from 

measured vibration signals.Wavelet entropy, relative wavelet entropy and wavelet-time entropy were used as 

features to detect and locate damage.  The wavelet entropy is defined as 
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where{pj} is the wavelet energy vector, which represents energy distribution in a time-scale.  It gives a suitable 

tool for detecting and characterizing singular features of a signal in time-frequency domain.  For the jth scale, 

the wavelet energy ratio vector {pj} is defined as 
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The relative wavelet entropy (RWE) is defined as 
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which gives a measure of the degree of similarity between two probability distributions. The wavelet-time 

entropy is defined as  
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wherepj
(i)

 is the time evolution of relative wavelet energy at a resolution level j in the time interval i 
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These features were investigated by numerically simulated harmonic signals and two laboratory test cases. It 

was demonstrate that wavelet-time entropy is a sensitive damage feature in detecting the abnormality in 

measured successive vibration signals; relative wavelet entropy is a good damage feature to detect damage 

occurrence and damage location through the vibration signals measured from the intact and damaged structures; 

and the relative wavelet entropy method is flexible in choosing the reference signal simultaneously measured 

from any undamaged location of the target structure. 

 

III. APPLICATIONS TO SPECIAL STRUCTURES 
A. Damage Detection on Bridge 

Omenzetter et al. [45] identified the unusual events in multi-channel bridge monitoring strain data 

using wavelet transform and outlier analysis.  The strain data was recorded during continuous, long-term 

operation of a multi-sensor Structural Health Monitoring (SHM) system installed on a full-scale bridge. Outlier 

detection in multivariate data was applied to find and localize abnormal, sudden events in the strain data and 

wavelet transform was used to separate the abrupt strain changes from slowly varying ones.  The method was 

successfully tested using known events recorded during construction of the bridge and later effectively used for 

detection of anomalous post-construction events.  

Omenzetter and Brownjohn [46] proposed and examined the application of concepts of time series 

analysis to the processing of data from a continuously operating SHM system installed in a major bridge 

structure.  The recorded static strain data was modeled using ARIMA models. The coefficients of the ARIMA 

models were identified on-line using an extended Kalman filter.  The method was first applied to strains 

recorded during bridge construction, when structural changes corresponded to known significant events such as 

cable tensioning.  Then the method was used to analyze signals recorded during the post-construction period 

when the bridge was in service.  The results show that the method can provide information on structural 

performance under normal environmental and operational conditions.  

Ding and Li (47) proposed an online structural health monitoring method for long-term suspension 

bridge using wavelet packet transform (WPT). The method was based on the wavelet packet energy spectrum 

(WPES) variation of structural ambient vibration responses. As an example application, the WPES-based health 

monitoring system was used on the Runyang Suspension Bridge to monitor the responses of the bridge in real-

time under various types of environmental conditions and mobile loads. As for the vibration monitoring of the 

bridge, a total of 27 uni-axial servo type accelerometers were installed at the nine sections of the bridge deck.  In 

each deck section, one lateral accelerometer directly recorded the lateral response, and the vertical acceleration 

of the deck section was obtained by averaging the accelerations measured by the two vertical accelerometers 

located in the upriver and downriver cross section, respectively.The analysis showed that changes in 

environmental temperature had a long-term trend influence on the WPES, and the effect of traffic loadings on 

the WPES presented instantaneous changes. 

Zhang [48] presented a statistical damage identification procedure for bridge health monitoring.  The 

damage features were extracted based on time series analysis combining auto-regressive and auto-regressive 

with eXogenous input prediction models.  The structural condition was evaluated in a statistical way based on 

the damage possibilities that were derived from a quite large number of data samples to minimize the effect of 

the variability in data acquisition process and in structural properties on the damage assessment.The proposed 

damage identification procedure was applied to a numerical 3-span continuous girder bridge model under 

random ground excitations.  Reasonable damage severities for beam structures as well as realistic noise levels 

were simulated.The results show that the damage identification procedure has great potential to detect structural 

damage at early stage, in which the structural modal frequency changes are almost imperceptible. 

 

B. Crack Detection on Beam and Plate 

Wang and Deng [49] detected the crack on beam and plate structures based on wavelet analysis of 

spatially distributed structural response measurements.Simulated deflection signals of a beam containing a 

transverse crack and the displacement response of a plate with a through-thickness crack were used.Wavelet 

transforms were performed on these signals to obtain the wavelet coefficients along the span of the structures. 

The crack location was detected by observing a sudden change, such as a spike, in the distribution of the wavelet 

coefficients.  The magnitude of the spike in the wavelet analysis was the maximum when the measurement point 

was next to the damage location.  

Biemans et al. [50] applied the piezoceramic sensors to monitoring crack propagation.  The specimens 

used were two rectangular (400 × 150 × 2 mm) aluminum plate with cracks initiated by spark erosion in the 
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middle of the plates. Each plate was instrumented with 6 piezoceramics bonded in a symmetrical configuration 

20 mm below and above the initiated crack.  One of the piezoceramics was used as an actuator excited by a sine 

sweep and Gaussian white noise signals to exploit broadband excitation.  The plates were subjected to static and 

dynamic tensile loading.  The growing crack was monitored by two of the remaining piezoceramic sensors.  The 

response strain data was analyzed using a number of time, frequency, and wavelet domain statistical parameters. 

The results show that low frequency broadband excitation offers a possible means of on-line detection of cracks 

in metallic structures. 

Yan et al. [51] detected the crack damage in a honeycomb sandwich plate by using two structural 

vibration damage feature indexes: natural frequency and WPT energy index. The finite element dynamic model 

of a honeycomb sandwich plate was presented using different mesh division for the surface plate and the 

sandwich plate to accurately express the crack damage status (locations, length and direction) of the plate. In 

order to acquire the experimental dynamic response of the plate, two piezo-patches with a size of 25×15×0.28 

mm were bonded on the surface of the plate.  One of them acted as an actuator and the other acted as a sensor. 

The natural frequencies of the undamaged plate were experimentally measured to verify the numerical model. 

Based on the dynamic model verified by the experiment, the damage feather indexes for various crack damage 

status were numerically computed. Then the crack damage status was determined by comparing the damage 

feature indexes obtained from the numerical and experimental results.  The authors found that natural frequency 

of structure might not be used to detect crack damage less than 10%, even up to 20% of the total size of a plate-

like structure; energy spectrum of wavelet transform signals of structural dynamic response was so sensitive to 

crack damage that it could exhibit a crack length close to 2% of the dimension of a plate-like structure.  They 

also found that high order modes of a structure contain more structural damage information; in order to detect a 

small damage, more vibration modes should be included in a structural dynamic model. 

Chang and Chen [52] detected the locations and sizes of multi-cracks in a beam by spatial wavelet 

analysis.  The crack type was open crack and was represented as a rotational spring.The mode shapes of the 

multi-cracked beam under free vibration were analyzed by wavelet transformation.  The positions of the cracks 

were observed as a sudden change in the plot of wavelet coefficients.  The natural frequencies of the beam were 

used to predict the depth of the cracks through the characteristic equation.  The limitation of this method is that 

there are two peaks near the boundaries in the wavelet plot and the crack can not be detected when the crack was 

near the boundaries.  

Poudel et al. [53, 54] employed high-resolution images for damage detection on a simply supported 

prismatic steel beam. A high-speed digital video camera was used to recode the free vibration displacement of 

the beam which was excited by imposing an initial displacement near the mid-span from the left support.  The 

camera had a Complimentary Metal Oxide Semiconductor (CMOS) sensor with 1280 × 1024 resolution and a 

10-bit A/D converter.  Its frame rate ranges was from 100 to 2000 frames/s.  The displacement data with high 

spatial resolution were then used to obtain the mode shapes and the mode shape difference function between the 

reference and damage states of the structure.The spatial signal in terms of mode shape difference function was 

decomposed by wavelet transformation to display the changes due to cracking damage.  The appropriate range 

of wavelet scale was determined by the spatial frequency bandwidths of the mode shape difference functions. 

The maximum modulus and sign change of phase angle in the wavelet coefficients indicated the changes at the 

damage locations.  

 

C. Damage Detection on Mechanical Structures 

Staszewski and Tomlinson [55] applied the wavelet transform to the problem of the detection of a 

broken tooth in a spur gear. The fault detection algorithm was based on pattern recognition analysis.  Features of 

the pattern were the modulus of the wavelet transform. Spectral analysis and an orthogonal transform were used 

to compress feature elements. The Mahalanobis distance of two patterns obtained from the normal (no fault) 

condition and not normal (fault) condition was used as a fault detection symptom.Visual inspection of the 

modulus and phase of the wavelet transform were used to localize the fault. 

Wang and McFadden [56, 57] used the wavelet transform to detect abnormal transients generated by 

gear damage. The early damage to a gear tooth usually caused a variation in the associated vibration signal over 

a short time, initially less than one tooth meshing period, taking the form of modulated or unmodulated 

oscillation. In later stages, the duration of the abnormal variation became longer, lasting more than one tooth 

meshing period. Other distributed faults, such as eccentricity and wear, might cover the most part of the whole 

revolution of the gear. Changes in the vibration signals therefore could be analyzed to provide an indicator of 

gear condition. When the size and shape of a wavelet were exactly the same as a section of the signal, the 

transform gave a maximum absolute value of wavelet coefficients. Therefore, the abnormal signal caused by a 

gear fault could be displayed by the wavelet transform, which could be regarded as a procedure for comparing 

the similarity of the signal and the chosen wavelet. 
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Li et al. [58] applied neural networks to the detection of motor bearing conditions based on the 

frequency features of bearing vibration. Five basic frequencies related to rolling bearing dynamic movement 

were extracted by fast Fourier transform (FFT) technique.  The basic frequency amplitude vectors were 

constructed to represent different bearing vibrations.  These vectors were created from the power spectrum of 

the vibration signal and consisted of the five basic frequencies with varying amplitudes based on the defect 

present.  The network consisted of five input measurements corresponding to the amplitudes of the five basic 

frequencies of interest, ten hidden nodes, and three output fault detectors (bearing looseness, defects on the inner 

raceway, and defects on the rolling elements).  The network was tested using the data generated by 

MOTORSIM.  The results show that neural network can be an effective agent in the detection of various motor 

bearing faults through the measurement and interpretation of motor bearing vibration signals.  

Liao et al. [59] developed a novel technique for monitoring the gearbox condition based on the Self-

Organizing Feature Maps (SOFM) network.  Seven time-domain features parameters, i.e. standard deviation, 

Kurtosis, root mean square value, absolute mean value, crest factor, clearance factor and impulse factor were 

extracted from industrial gearbox vibration signals measured under different operating conditions. Trained with 

the SOFM network and visualized using the U-matrix method, the feature data were mapped into a two-

dimensional space and formed clustering regions, each indicative of a specific gearbox work condition. 

Therefore the gearbox operating condition with fatigue crack or a broken tooth compared with the normal 

condition was identified clearly. 

Kar and Mohanty [60] applied the multi-resolution Fourier transform (MFT) of vibration and current 

signals to gearbox health monitoring. One and two teeth were artificially removed in one gear of the gearbox to 

simulate actual fault condition. When the gearbox was operated under several loads, the vibration signals were 

acquired from the tail-end bearing of the gearbox, and simultaneously the current drawn by the induction motor 

is acquired. The vibration and current signals were decomposed into four levels using discrete wavelet transform 

(DWT) with an orthogonal wavelet of „db8‟. Then a hanning window with 256 data points and 50% overlap was 

applied to the scaled signals to find the MFT coefficients.The MFT coefficients of signals were used to classify 

the types of defects by tracking the energy level possessed by the defect characteristic frequency.  

 

IV. CONCLUSIONS 
This paper provided an overview of signal-based methods to detect, locate, and characterize damage in 

structure and mechanical systems.  These methods examine changes in the features derived directly from the 

measured time histories or their corresponding spectra through proper signal processing methods and algorithms 

to detect damage.Based on different signal processing algorithms for feature extraction, these methods are 

classified into time-domain methods, frequency-domain methods, and time-frequency (or time-scale)-domain 

methods.Features derived by time-domain methods include auto-regressive model, auto-regressive moving 

average model and auto-regressive with eXogenous input model.  Features derived by frequency-domain 

methods include frequency response functions, frequency spectra, and power spectral density and FFT 

magnitudes.  Features derived by time-frequency-domain methods include spectrogram, continuous wavelet 

transform coefficients, wavelet packet energies and wavelet entropy.Many successful applications demonstrated 

that different damage scenarios can be uniquely identified by these signal-based features and pattern recognition 

techniques can enhance the accuracy and efficiency of damage detection.  
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