
International Journal of Engineering Research and Development

e-ISSN: 2278-067X, p-ISSN: 2278-800X, www.ijerd.com

Volume 12, Issue 1 (January 2016), PP.28-32

28

Classification of Programming Language

Dr.Seetharam K, Sharana B Gowda, Basavaraj Chunchure
1
Professor, Dept. of EEE, Christ University Bangalore- 560029

2
Sharana. B.Gowda, Asst.Professor, Dept of CSE JSSATE Bangalore- 560060

3
Basavaraj Chunchure, Research Scholar, Dept of CSE, BIGCE, Solapur-413255

Abstract:- Classification of database of programming languages is useful in system modeling situations to

produce a concise representation of the behaviour of a system. Such analysis can be formed using different

similar algorithms to aggregate the number of data sets to manage number of subsets /categories. Here ten

languages are classified based on five different methods.1) based on weight of criteria, 2) based on Bayesian

theory, 3) Based on MCDM, Multi criterion decision making. 4) Based on Defect 5) Based on productivity.

Keywords: - Function point, Productivity

I. INTRODUCTION

Classification is a classical problem extensively studied by statisticians and machine learning

researchers. It is the process of separation or ordering of objects into classes. In the literature new classification

techniques are developed to deal with millions of objects having some number of attributes. It is defined as a

process in which classes have been predefined needs a method that will train to allocate objects to the classes. It

ensures that the data sets in a group are more similar to each other. Five cases of classification are discussed in

this paper.1) weights of criteria, 2) Multi criterion decision making (MCDM) 3) Bayesian method 4) Based on

the defect and 5) Based on ranking of productivity. The data used is directly taken from different activities of

software development using ten versions of the same software project. [1],[7]

A. MULTIDIMENSIONAL SCALING (MDS):

Multidimensional scaling is one of several multivariate techniques that aim to reveal the structure of a

data set by plotting points in one or two dimensions [9]. In the literature typical MDS problem there is often a

degree of arbitrariness in the definition of distance. Input data for MDS is in the form of a distance matrix

representing distance between pair of objects, which, in this case it is based on subjective assessment of

relationship between lines of code and function point. The basic idea is different programming languages (here

ten languages) are shown in the two dimensional graphical example. „Multi‟ itself refers to the fact that data

representation is not restricted to constructing maps in one or two dimensions. Ten languages are distinguished

by line of code (loc) per function point. They are demonstrated by multidimensional scaling shown in the Graph

[2],[9].

B. WEIGHTS OF CRITERIA:

 Entropy is a term that measures the uncertainty associated with random phenomena of the expected

information content of a certain message and this uncertainty is represented by a discrete probability

distribution. The entropy method estimates the weights of the various criteria from the given payoff matrix and

is independent of the views of the decision maker. Hwang and Yoon [8] mentioned that Entropy method is

particularly useful to explore contrasts between sets of data. These sets of data can be mapped as a set of

alternative solutions in the payoff matrix where each alternative solution is evaluated in terms of its outcome.

The philosophy of the method is based on the amount of information available and its relationship with

importance of the criterion. The method uses weights of various criteria from the available payoff matrix and is

independent of decision maker. By organizing observations or objects of similar properties into meaningful

groups, the ten languages considered are Assembly, C, Chill, Pascal, PL/I, Ada83, C++, Ada95, Objective C,

and Smalltalk. Six different activities (req, design, code, test, doc, mgt) each 1500 function points in size are

taken as the criteria. Entropy and weights of criteria with reference to languages is used. The results are shown

in table A1 languages. Entropy /weights of criteria with respect to six activities are shown in table A1 activities.

C. NAIVE BAYES DECISION:

 The naïve Bayes classifier is a more sophisticated method than the naïve rule. The main idea is to

integrate the information given in a set of predictors into the naïve rule to obtain more accurate classifications.

Classification of Programming Language

29

The probability of a record belonging to a certain class is now evaluated not only based on the prevalence of that

class but also on the additional information that is given on that record in terms of its X information. It works

only with predictors that are categorical. Numerical predictors must be binned and converted to categorical

variables before the naïve Bayes classifier can use them. A hypothesis is generated that the given data belongs to

a particular class. We then calculate the probability for the hypothesis to be true. The approach requires one scan

of the whole data. To define Bayes theorem: P (A/B) =P (B/A). P (A) /P (B) gives equation P (A/B) is prior

probability and P (B/A) is posterior probability of the system. The results are shown in Table B1 with respect to

languages, and also with respect to activities.

D. MCDM (Multi criterion decision making):

 Technique for order preference by similarity to an ideal solution (TOPSIS) is based on the principle

that the chosen alternative should have the shortest distance from the ideal solution and farthest distance from

the negative ideal solution. The methodology consists of

1. Computation of weighted normalization payoff matrix

2. Determination of ideal f* value and negative ideal f** value for each criterion.
3. Calculation of separation measure, Relative closeness of each alternative with respect to negative ideal

measure is C1.Higher the C1 value, better the alternative. Measurement of separation measures, are

Dimensional Euclidean distances. These are measured and made use to calculate better weights of criteria. Table

C1 gives result when languages taken as reference and also when activities taken as reference [4].

E. DEFECT POTENTIALS FOR TEN VERSIONS:

 Defect potential of a software project is the sum of the errors found in requirements, design code, user

documentation and bad fixes secondary errors introduced when repairing prior defects. Defect removal

efficiency of a project is the total percentage of defects eliminated prior to delivery of software to its intended

clients. This will be calculated on anniversary of delivery of software. Considering defect potentials for ten

versions of the same software project each 1500 function points in size. The defect at each stage of development

is taken into consideration. Taking the columns of total defects and documentation defects were held constant

using the data normalization. Ten Programming languages are classified and the result is shown in Table D1.

Classification with respect to activities is also given [6], [11], [12].

F. PRODUCTIVITY BASIS:
 When using the standard economic definition of productivity, [3],[10] which is "goods or services

produced per unit of labour or expense" the function point ranking matches economic productivity assumption.

Taking measurement of the productivity rates of ten versions using LOC per staff month is in table F1. It is in

opposite to productivity expressed in terms of function points per staff month. Table E1 gives ranking of ten

versions with respect to function points in descending order of productivity. Table E1 is completely in reversed

order as that of Table F1.

G. CLASSIFICATION OF PROGRAMMING LANGUAGES AND ACTIVITIES

Based on Weight of criteria

ASSEMBLY > C > CHILL > PASCAL > SMALL TALK >

ADA83 > C++ > OBJECTIVE C > ADA95

LANGUAGES

doc > req > design > test > code > mgt Activity

Table: A1

 Based on Bayesian

ADA95 > C++ > OBJECTIVE C > ADA83 > PL/1 >

 PASCAL > SMALLTALK > CHILL > C > ASSEMBLY

LANGUAGES

 design > req/doc > mgt> test > code Activity

Table: B1

Classification of Programming Language

30

 Based on MCDM

 CHILL > PASCAL > C > PL/I > C++ > ADA95 >

 ADA83 > OBJECTIVE C> SMALLTALK >

ASSEMBLY

LANGUAGES

 doc > test > design > code> mgt > req Activity

Table: C1

 Based on DEFECT

 ASSEMBLY > C > CHILL > SMALLTALK >

PASCAL >

 OBJECTIVE C > PL/I > ADA83 > C++ > ADA95

LANGUAGES

 design > doc > test > code > mgt > req Activity

 Table: D1

Based on productivity ranking by Function point

SMALLTALK > OBJECTIVE C > ADA95 > C++ >

ADA83 > PL/I > PASCAL > CHILL > C > ASSEMBLY

LANGUAGES

design > doc > test > code > mgt > req Activity

Table : E1

Based on productivity ranking by LOC point

ASSEMBLY > C > CHILL > PASCAL > PL/I >

 ADA83 > C++ > ADA95 > OBJECTIVE C > SMALLTALK

LANGUAGES

design > doc > test > code > mgt > req Activity

Table: F1

Table 1 CORRELATION COEFFICIENT

 Assembly C CHILL PASCAL PL/I ADA83 C++ ADA95 OBJECTIVE SMALLTALK

Assembly 1 1 0.987 0.981 0.974 0.966 0.95 0.934 0.878 0.84

C 1 0.998 0.996 0.99 0.988 0.978 0.967 0.925 0.89

CHILL 1 0.99 0.997 0.995 0.987 0.979 0.943 0.916

PASCAL 1 0.99 0.997 0.992 0.985 0.953 0.929

PL/I 1 0.999 0.995 0.99 0.962 0.94

ADA83 1 0.998 0.994 0.971 0.951

C++ 1 0.998 0.98 0.967

ADA95 1 0.99 0.977

OBJECTIVE 1 0.997

SMALLTALK 1

Table: G

Table G represents Correlation matrix of programming languages [5]

Classification of Programming Language

31

Fig. 1: Relationship between lines of code and function point.

Fig. 2: Dendogram of lines of code and function point.

II. CONCLUSIONS

The analysis for ten version of the same software project needed to encode 1500 function point is

carried. Subjective assessment of relationship between lines of code and function point is graphically shown in

Fig.1 and Fig.2. A number of software packages are available to solve the classification algorithms. Here limited

information is provided by 5 methods for classification of programming languages. Correlation matrix of

languages is given in the table G1.

Classification of Programming Language

32

REFERENCES
[1]. Jones, Capers "Applied software measurement Global analysis of productivity and quality". Tata

McGraw Hill Edition 2010.

[2]. Jones, Capers "Estimating software costs, 2
nd

 edition, N, McGraw Hill 2007.

[3]. Jones, Capers, "Programming productivity", New York McGraw Hill publishing company; 1986

[4]. Guanrong Chen and etal Introduction to fuzzy sets, fuzzy logic and fuzzy control systems. CRC Press,

2000.

[5]. Daniel T Larose Data Mining: methods and models. Wiley inter science 2006.

[6]. John D Musa Software Reliability Engineering McGraw Hill 1999

[7]. Conte, S., Dunsmore H. and Shen, V., Software Engineering Metrics and models, Benjamin

Cummings, Menlo Park CA, 1986.

[8]. R. Kelley Pace and Ronald Berry, sparse spatial auto-regressions, statistics and probability letters, vol.

33 No.3,pp 291-297, May 5,1997 Data set available from stat lib http: // lib.stat.cmu.edu

/datasets/houses.zip

[9]. Richard A Johnson and Dean Wichern, Applied multivariate statistical analysis, Prentice Hall, upper

Saddle River, NJ, 1998.

[10]. Carr, D. and R J Kizior, “The case for continued COBOL Education”, IEEE Software, Volume17,

Number2 March/April 2000, pp.33-36.

[11]. Arranga E., “In COBOL‟s Defense”, IEEE Software, volume 17, number 2, March/April 2000, pp.70-

75.

[12]. Kemerer C.F. and S Slaughter, “An Empirical Approach to Studying Software Evolution “, IEEE

Transactions on Software Engineering, Volume 25, Number 4, July/August 1999, pp.493-509..

