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Abstract:-  Important results of the vector mechanics are developed in an explicitly and educational form. The 

first calculation is a link for the algebraic process to obtain the acceleration in polar coordinates, once in 

curvilinear motion is usual to determine the radius of curvature, for example, in calculating the tangential 

acceleration; here the determined formula is explained. Finally, in the general model of collisions or impacts, the 

task is solving a system of simultaneous equations, which produces the conservation of energy and motion laws, 

which is useful also to understand the coefficient of restitution method. The three methods are commonly used 

in vector mechanics, however, almost always their elucidation is omitted. Our purpose is to provide in science 

and engineering, these significant deductions, in order to improve lessons and benefit to a better understanding 

and application of such models to real problems.  

  

Keywords:- Kinetic energy, conservation laws, collisions, radius of curvature. 

 

 

I. INTRODUCTION 
In dynamic courses at the level of studying a major, the thematic programs have a great multiplicity of 

contents, the syllabus firstly include acceleration in Cartesian coordinates, likewise the definition of tangential 

and normal component; the speed and angular acceleration is the crucial issue, then is continued to express the 

acceleration in polar and cylindrical coordinates. Immediately, there are exercises which have been performed 

with applications of Newton's second law, moments, torques and peers. The rotational movement is significant 

since it is applicable to mechanisms and machines. Afterward, is continued with the elucidation of the work, 

energy, momentum and conservation laws. Then is studied the rigid body dynamics, airspeeds, articulated 

mechanisms and finally Dalembert principle. The amount of problems and exercises is of at least one thousand 

as is confirmed by subject texts such as the ones by Beer [1], Bedford [2] and Hibbeler [3]. 

The abundance of constructs leaves few time to develop and obtain certain deductions by elementary 

formulas of the course. The performance is strengthened if each item is accompanied by a demonstration of its 

main concepts, in that purport is necessary to develop some of them with application of algebra and differential 

calculus. Out of all justifications, we select some of interest, such as the development of acceleration in polar 

coordinates, the formula for the curvature radius, collisions, impacts and the restitution coefficient. 

These issues are relevant in research, for example M.F. Ferreira Da Silva [4] studied impacts by using 

the geometric meaning of the restitution coefficient, another focus of interest is from Aníbal O. Garcia and Jose 

Pablo Cebreiro [5] who prove a dynamic model because of the variation of mass and movement that there is in 

an impact. B.F. Voronin and G. Villalobos H [6], determined the curvature radius of the cam on a flat 

mechanism. On the reference books side, Weisstein [6] and R. Tenenbaum [7] are useful in the more 

comprehensive understanding of the concepts. 

Our contribution is didactic and responds to the excessive number of topics in the course program; 

therefore, is considered essential to generate this useful kind of materials in subjects related to science and 

engineering. The idea is that a work as the proposed here is innovative in synthesizing key derivations and leads 

to the design of auxiliary lessons in courses of dynamic, a material that helps effective study of the dynamics. 

  

II. ACCELERATION IN POLAR COORDINATES 

To represent vectors in polar coordinates, is defined a unit vector ˆ
re  pointing in the radial direction, so 

that the position where is the vector is determined from O to P 

ˆ
rr re


 (1) 

The velocity is obtained deriving in relation to the time. (1) 

ˆ
ˆ r

r

dedr dr
v e r

dt dt dt
  




 (2) 

When P moves across a curvilinear path, the unit vector ˆre rotates with angular velocity 
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d

dt


   (3) 

The derivative in relation to ˆre  time may be expressed in terms of ê  and it can be stated as 

ˆ
ˆrde d
e

dt dt



  (4) 

Substituting this in (2), is obtained the velocity of point P, also is possible to replace the angular velocity (3) 

ˆ ˆ ˆ ˆ
r r

dr d dr
v e r e e r e

dt dt dt
 


   


  (5) 

To demonstrate the equation (4), and according to figure 1, is obtained: 

ˆˆ cosre i sen j  


 (6) 

ˆˆ cose sen i j    


 (7) 

 
Fig. 1. Unit vectors 

The relation between ˆ
re and ê  is that they are perpendicular ˆ ˆ 0re e  , so it is only about to derive the 

relation (6) 

ˆ (cos )r i j

d d
e sen

dt dt
    (8) 

ˆ
cosr

i j

de d d
sen

dt dt dt

 
 

 
   
 

 (9) 

 
ˆ

cosr
i j

de d
sen

dt dt


     (10) 

Where is identified the unit vector (7) 
ˆ

ˆrde d
e

dt dt



  (11) 

Desired result. 

The acceleration is obtained by deriving the equation (5) in relation to the time 

ˆ ˆ
r

dv d dr d
a e r e

dt dt dt dt


 
   

 


  (12) 

2 2

2 2

ˆˆ
ˆ ˆ ˆr

r

dededv d r dr dr d d d
e e r e r

dt dt dt dt dt dt dt dt dt


 

  
    


  (13) 

In the last term can be stated that 

ˆ
ˆ

r

de d
e

dt dt

 
   (14) 

In effect at deriving the relation (7) 

ˆ ( cos )i j

d d
e sen

dt dt
      (15) 

At deriving in relation to time 

ˆ
cos seni j

de d d

dt dt dt

  
 

 
   
 

 (16) 

 
ˆ

cos seni j

de d

dt dt

 
     (17) 
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ˆ
ˆ

r

de d
e

dt dt

 
   (18) 

The previous result is replaced in the acceleration vector (13) to generate the result in polar coordinates 
22 2

2 2
ˆ ˆ2r

d r d d dr d
a r e r e

dt dt dt dt dt


      
       

     

  (19) 

 

III. CURVATURE RADIUS 
The second formula to deduce is the curvature radius, commonly used in dynamics, it is known that for 

a curve  y f x ,  the curvature radius is given by 
3 2

2

2

2

1
dy

dx

d y

dx



  
  
   

 (20) 

For obtaining the aforementioned formula are used parametric equations given by  

 

 

x x t

y y t




 (21) 

In these equations terms, the curvature radius is given by 

 
3 2

2 2x y

xy xy







 

 
 (22) 

Figure 2 describes the geometrical interpretation of a radius of any curve. 

 
Fig. 2. Radius of a curve 

 

In the next figure 3 is described a  y f x  curve 

 
Fig. 3. Tangent line. 

 

Also in Figure 3 is observed that for any curve 

tan
dy y

dx x
  



  (23) 

Remembering its respective derivate  
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2tan
sec

d

d





 

 (24) 

Equating both derivatives has 

2

2
sec

xy xy

x





 
  (25) 

Using the trigonometric identity 
2 21 tan sec    (26) 

It now has 

2

2
1 tan

xy xy

x
 


   

 
  (27) 

Which can be rewritten as 
2

2 2
1

y xy xy

x x


  
  

 

  
 

 (28) 

likewise 
2 2

2 2

x y xy xy

x x


  
 

 

   
 

 (29) 
2 2x y xy xy    

   
 (30) 

Is determined 

2 2

xy xy

x y







 
  ´ (31) 

Furthermore, a differential curve is given by the Pythagorean theorem. According to Figure 4 it is 

 
Fig. 4. length of arc. 

 
2 2 2ds dx dy   (32) 

2 2 2s x y   
 (33) 

In polar coordinates, a differential arc according to Figure 5, is given by 

ds d   (34) 

ds s

d


 
 




 (35) 

 
Figure 5. Length of arc 
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Substituting (31) and (33) both equations in (35) is determined that 
1

2 2 2

2 2

1

x y

xy xy

x y



  






 

 

   (36) 

With algebra is generated the curvature radius for parametric equations, equation (22) 

 
3 2

2 2x y

xy xy







 

 
  (37) 

The formula for a  f x is given by the second derivative and making explicit the derivative in relation to time 

[8]. 
2

2

dy d dy d y

dx dx dx dx x

   
    

   




 (38) 

d y dt

dx x dt

  
   

  



  (39) 

1 1d y

dx x dt x

   
    

   



 
 (40) 

In fact, if it has that 
dx

x
dt

  , equation (40) it is correct. 

Deriving the formula quotient 
2

2 2

1d y xy xy

dx x x

  
   
  

 

 
 (41) 

2

2 3

d y xy xy

dx x




 

  (42) 

Now from the parametric variables formula for equation (37) is done algebra, so that the second derivative is 

identified 

 
3 2

2 2x y

xy xy







 

 

 
 

 

 

 

 

3 23 2 2 22 2

3 23 2

3 3

x yx y

xx

xy xy xy xy

x x



 
 

  



   

 
 (43) 

The curvature radius is obtained 
3 2

2

2

2

1
y

x

d y

dx



  
  
   
 
 
 





 (44) 

 

IV. COLLISIONS AND RESTITUTION COEFFICIENT 
Then, is presented the third instance to demonstrate on the theme of impacts, it is started generating the 

formula for two masses in motion before the collision, afterwards assume a collision with different initial 

velocities and considering primed velocities after the collision, the conservation of kinetic energy and moment is 
2 2 2 2

1 1 2 2 1 1 2 2' 'm v m v m v m v    (45) 

1 1 2 2 1 1 2 2' 'm v m v m v m v    (46) 

Rewriting the equation (46) as 

 

 1 1 1 1 2 2 2 2' 'm v m v m v m v     (47) 

   1 1 1 2 2 2' 'm v v m v v    (48) 

Similarly, the energy conservation is rewritten, equation (45) 
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2 2 2 2

1 1 1 1 2 2 2 2' 'm v m v m v m v    (49) 

   2 2 2 2

1 1 1 2 2 2' 'm v v m v v    (50) 

Can be expressed as 

     1 1 1 1 1 2 2 2 2 2' ' ' 'm v v v v m v v v v      (51) 

Herein identified in equation (51) the expression (48) result then 

1 1 2 2' 'v v v v    (52) 

1 2 2 1v v v v     (53) 

This result for equation (53) substitute in (46) for 1'v  

 1 1 2 2 1 2 2 1 2 2' 'm v m v m v v v m v       (54) 

1 1 2 2 1 2 1 2 1 1 2 2' 'm v m v m v m v m v m v      (55) 

 1 1 2 2 1 2 1 1 2 1 2'mv m v mv mv v m m      (56) 

The mass 2 velocity after the collision is  

1 1 2 2 1 2
2

1 2

2m v m v m v
v

m m

 
 


 (57) 

1 1 2 1
2 2

1 2 1 2

2m v m m
v v

m m m m


  

 
 (58) 

If mass 2 is in repose before the collision, the equation (58) becomes 

1 1
2

1 2

2m v
v

m m
 


 (59) 

Furthermore, in the same manner for the mass one is proceeded as same at solving for (52) has 

2 1 1 2' 'v v v v     (60)  

By substituting this expression in equation (46) is obtained 

 1 1 2 2 1 1 2 1 1 2' 'm v m v m v m v v v      (61) 

1 1 2 2 1 1 2 1 2 1 2 2' 'm v m v m v m v m v m v      (62) 

 1 1 2 2 2 1 2 2 1 1 2'm v m v m v m v v m m      (63) 

 2 2 1 1 2

1

1 2

2m v v m m
v

m m

 
 


 (64) 

It has the velocity of mass one after the collision  

 1 22 2
1 1

1 2 1 2

' 2
m mm v

v v
m m m m


 

 
 (65) 

If mass one is initially in repose, it has  

2 2
1

1 2

' 2
m v

v
m m




 (66) 

Finally, is obtained the formula for the coefficient of restitution for an ideal case (perfectly elastic) for two 

masses 1m  and 2m with velocities aiv before impact and biv , after ; applying energy conservation  

2 2 2 2

1 1 2 2 1 1 2 2

1 1 1 1

2 2 2 2
a a b bm v m v m v m v    (67) 

2 2 2 2

1 1 2 2 1 1 2 2a a b bm v m v m v m v    (68) 

2 2 2 2

1 1 1 1 2 2 2 2a b b am v m v m v m v    (69) 

   2 2 2 2

1 1 1 2 2 2a b b am v v m v v    (70) 
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Also recurring to the momentum conservation 

1 1 2 2 1 1 2 2a a b bm v m v m v m v    (71) 

1 1 1 1 2 2 2 2a b b am v m v m v m v    (72) 

   1 1 1 2 2 2a b b am v v m v v    (73) 

Dividing the equation (70) by (73) is determined 

 
 

 
 

2 2 2 2

1 1 1 2 2 2

1 1 1 2 2 2

a b b a

a b b a

m v v m v v

m v v m v v

 


 
 (74) 

 
 

 
 

2 2 2 2

1 1 2 2

1 1 2 2

a b b a

a b b a

v v v v

v v v v

 


 
 (75) 

By developing the difference of squares 

  

 

  

 
1 1 1 1 2 2 2 2

1 1 2 2

a b a b b a b a

a b b a

v v v v v v v v

v v v v

   


 
 (76) 

Is obtained 

1 1 2 2a b b av v v v     (77) 

1 2 2 1b b a av v v v     (78) 

Then the restitution coefficient (e) is defined as the negative ratio of the relative velocity after the collision 

between the relative velocity before the collision 

1 2

1 2

b b

a a

v v
e

v v


 


 (79) 

By eliminating the negative sign, it has: 

2 1

1 2

b b

a a

v v
e

v v





 (80) 

The value of (e) shall be between 0 and 1, being totally elastic in 1 and completely inelastic in 0. The 

result is related to the conservation of energy 

 

V. RESULTS DISCUSSIONS 
In the acceleration in polar coordinates are obtained equations (4) and (11) provided in the respective 

courses resolution as obvious, also is a crucial link in the process of setting the acceleration vector. In the 

curvature radius is a calculation corresponding to a differential kind, is about joining steps in simplified form 

where key combinations are in equations (38) and (40). The point quid in the development of the velocities 

equation after impact is in (50) and (52) which always creates difficulty for students when solving, finally, the 

restitution coefficient is another alternative method by integral, here it is used the conservation laws in line with 

the velocities method seen here. It is noticed that with minimal arguments can be explained important concepts 

of body dynamics. 

 

VI. CONCLUSION  
This type of work can be valuable to help fully understand the concepts of vector dynamics. The first 

conclusion is that the relation with differential and integral calculus is significant; for example, the acceleration 

in polar coordinates is always a problem in a learning process, this perhaps because there is no solid basis to 

know the root of the model. The curvature radius is a study of flat curves, it is necessary to know tangential and 

normal lines to a curve for a more precise deduction. Such deduction should be studied in detail in the preceding 

dynamic courses, although the solution provided here is enough justification. The second conclusion is the issue 

of collisions and restitution coefficient, closely related to the conservation laws of energy and motion, but 

requires minimal skills in linear algebra, this other course that serve as the base to the dynamics. Finally, we 

must mention other deductions that must effectuate in the course, such as the force in terms of the derivative of a 

potential, calculation of moments of inertia, Newton's second law with the conservation movement, Euler angles, 

principle Dalembert. Everything can be material to design lessons of the type here proposed. 
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