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Abstract:- In this study we investigate volatility forecasting of REIT, from January 03, 2007 to November 18, 

2016, using four GARCH models (GARCH, EGARCH, GARCH-GJR and APARCH). We examine the 

performance of these GARCH-type models respectively and backtesting procedures are also conducted to 

analyze the model adequacy. The empirical results display that when we take estimation of volatility in REIT 

into account, the EGARCH model, the GARCH-GJR model, and the APARCH model are adequate. Among all 

these models, GARCH-GJR model especially outperforms others. 
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I. INTRODUCTION 
Real Estate Investment Trust (REIT) is a crucial financial commodity. For many investors, it is 

possible to acquire ownership in real estate ventures, as well as some cases operate commercial properties like 

apartment complexes, office buildings, hospitals, and so on. There are three major types of REITs in the US and 

they are Equity REITs, Mortgage REITs, and Hybrid REITs. Nowadays, REIT is becoming more popular for 

investors to invest. Hence it is crucial to understand their price movements and calculate the return and volatility 

structure. 

Considering the importance of relatively accurate volatility forecasting, many pieces of literature have 

emerged to model and predict volatility in financial markets to calculate value-at-risk (VaR), derivatives pricing 

and make the hedging decision. A lot of papers focus on aspects of REIT volatility. Stevenson (2002)[12], 

utilized univariate models to analyze the volatility dynamics on monthly REIT returns. Devaney (2001)[13] 

used a GARCH-M model with respect to monthly REIT data, which examines the relationship between interests 

rates and REIT volatility primarily. What’s more, Winniford (2003)[14] and Najand and Lin (2004)[15] 

provided further evidence, which suggests that volatility shocks are persistent, concerning the daily volatility 

dynamics in the REIT sector. For simplicity and conventionality, one usually assumes that asset returns of 

econometric time series follow a normal distribution. However, Hsu, Miller and Wichern (1974)[16] and 

Hagerman (1978)[17] showed that the normal distribution does not fit asset returns significantly. Thus non-

Gaussian time series have begun to be noticed and development of forecasting methods is on the way gradually. 

Accurate volatility forecasts have become a crucial issue because of the increasing volatility. Benjamas and Rizz 

(2009)[18] utilized the GARCH model to estimate the volatility of U.S Equity REIT based on data of U.S 

Equity REIT from 1993 to 2006. Cotter and Stevenson (2006)[19] adopted a multivariate GARCH based model 

to analyze the volatility in REIT. 

One widely used measurement of the stock risk is the so-called Value-at-Risk, VaR for short. US 

investment bank J.P. Morgan introduced and incorporated it in their risk management model RiskMetrics. The 

Value-at-Risk of a stock is mainly known as the maximum loss that may be suffered on that stock in a short 

period of time. More precisely, a VaR(α) is the α-quantile of the distribution of the maximum loss, typically α is 

chosen in the range of 0.01 to 0.05. By varying the value of α, one can investigate a whole risk distribution of 

the maximum loss. 

An investor needs to estimate the volatility of REIT for improving the measure for VaR. As have been 

shown in empirical studies, financial instruments have heteroscedasticity in the variance. The milestones 

addressing this observation are the ARCH and GARCH models, which were introduced by Engle (1982)[8] and 

Bollerslev (1986)[1]. Later on, many new generalized varieties of GARCH models have emerged, which 

according to different factors to capture the changing volatility over time. However, when we forecast the 

volatility for all kinds of financial data, it is difficult to say which of the models from the GARCH family is the 

best. The examined models need to be refined to specific data sets since the availability of plethora of different 

GARCH models. This paper focus on four of the most influential models, including GARCH(1,1), 

EGARCH(1,1), GARCH-GJR(1,1), APARCH(1,1). 

This paper is organized as follows. Section 2 introduces the sample data and the statistical parameters. 

We review certain four GARCH-type used in this paper in section 3. We introduce two ways of backtesting VaR 



Garch Models In Value-At-Risk Estimation For Reit 

18 

in Section 4. Section 5 contains the empirical results with respect to REIT daily log return. At last, we give our 

conclusion in section 6. 

 

II. DATA AND DESCRIPTIVE STATISTICS 
Data Description 

In this paper, we mainly concentrate on the daily REIT price time series over the ten-year period. There 

were 2,492 daily data points from Jan. 3, 2007 to Nov. 18, 2016. The collection of REIT stock was from Yahoo 

Finance. We use the daily closing price to investigate the portfolio’s performance. 

Furthermore, to develop an accurate track record of asset performance, we use Pt to denote the daily 

closing price of a stock, for integer t ∈ Z. The stochastic properties of the price time series {Pt} are 

characterized by the relative log returns, which are defined as: 

                                                        
(1) 

The daily closing values of REIT and its returns are displayed as following. 

 

 
 

 
Fig.1:  Time plots of REIT stock from 2007-01-03 to 2016-11-18 

 

The upper panel of Figure 1 displays the time plot of daily closing price and the lower panel shows the 

daily log return. The daily log returns plot shows a recent negative expected return trend. Note that the volatility 

is relatively stable before 2010, which is followed by more intense turbulence. 

 

Table Ⅰ: Summary Statistics of the REIT Daily Log Returns January 03, 2007-November 18, 2016 

Mean Range Standard Deviation Skewness Kurtosis Observations 

0.0173 (-21.4847, 16.8119) 2.3220 -0.1140 13.1502 2491 

 

As demonstrated in Table Ⅱ, the mean is low while the corresponding standard deviation is high. 

Meanwhile, the value of skewness and kurtosis are far away from the standard normal distribution, which 

implies that the return has a leptokurtic distribution with fat tail. Thereafter, we apply two ways to test 

normality, the Jarque-Bera test and ShapiroWilk test. Both of them reject the null hypothesis of normal 

distributed at significance level. Furthermore, we use KPSS test to examine the stationary property of the daily 

log return, which indicates that the series have weak stationarity. To check the autocorrelation of the returns, we 

use Ljung-Box test on returns and square returns. The value in the table has shown that all sample returns have 

long memory. 
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Test for Normality 
While analyzing the time series, one usually assumes that the process follows normal distribution. 

However, it sometimes contrasts to the truth. Our research on REIT Stock demonstrates that the return is not 

normally distributed. Here we use three methods to verify it. 

At first, we use the Q-Q plot to test the fitting for normal distribution. 

 

 
Fig.2:  Quantile-Quantile plot of returns against the normal distribution 

 

 
Fig.3:  Quantile-Quantile plot of returns against the Student-t distribution 

 

The plots 2 and 3 are the Q-Q plot of the empirical distribution of the daily returns (y-axis) against the 

normal distribution (x-axis). As shown in the plots, empirical distribution of the daily returns exhibits heavier 

tails than the normal distribution, which means that normal distribution is unrealistic for the return process. 

Compare to the normal distribution, the Student-t distribution fits better. So we test all GARCH models with 

Student-t distribution in our study. 

To support our observation, here we use two tests. The first one is the so-called Jarque-Bera test, JB for 

short, which can be used to test similarity in kurtosis and skewness of the sample data, compare to a normal 

distribution. The test statistic is defined as: 

                                                   
(2) 

where n is the sample size, S is the sample skewness and K is the sample kurtosis. If the sample data 

follows normal distribution, the statistic JB should follow asymptotically a Chi-squared distribution with two 

degrees of freedom. The null hypothesis is that the sample data fit the normal distribution. 

The second method named Shapiro-Wilk test, which is considered one of the most powerful tool to test 

normality. The Shapiro-Wilk test statistics is defined as 

                                                     (3) 
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where  is the t-th order statistic, is the sample mean, (a1, a2 · · · aT) are the weights. The null hypothesis is 

W = 1 which indicates the normal distribution. We reject the null hypothesis if p-value is less than the 

significance level α. 

In Table Ⅱ, which shows results of Jarque-Bera test and Shapiro-Wilk test, we can reject the null 

hypothesis of a normal distribution at all significance levels. 

 

Test for Correlations 
To check autocorrelation, we choose the Ljung-Box test by Ljung and Box (1978)[20], which is used to 

check time serial correlation of returns. The null and alternative hypothesis of the Ljung-Box test is defined 

respectively as follow: 

    vs     for some  

where n is the sample size, m is the number of lags being tested, and  is called the lag-l autocorrelation of 

{rt}, i.e. the correlation between {rt} and {rt-l}. 

The Ljung-Box Q test statistic is 

                                                          (4) 

As Ljung and Box proposed, if we assume that  are independent, identically distributed, the 

approximate distribution of Q(m) should be Chi-squared with m degrees of freedom. Here we reject the null 

hypothesis if Q is too large or the p-value of Q(m) is less than or equal to the significance level of α. The graph 

of returns and square returns is shown in Figure 4. 

 

 
Fig.4:  Sample autocorrelation coefficients and partial autocorrelation coefficients for 

REIT daily log returns and square returns 

Descriptive statistics and hypothesis test results for REIT returns are as follows. 

 

Table Ⅱ: Tests for the REIT Daily Log Returns January 03,2007-November 18,2016 

 Statistic p-value 

KPSS test 0.08 0.1 

Shapiro-Wilk test 0.82 2.2e-16 

Jarque-Bera test 17989.2 2.2e-16 

LB-Q(5) 108.24 2.2e-16 

LB-Q(16) 144.24 2.2e-16 

LB-Qs(5) 1547.3 2.2e-16 

LB-Qs(16) 4704.7 2.2e-16 

ARCH test Qs(5) 251.53 2.2e-16 

ARCH test Qs(16) 380.6 2.2e-16 

 

As demonstrated in Table Ⅱ, the null hypothesis of weak stationarity fails to be rejected at the 5% 

significant level. The Ljung-Box Q statistics on the 5th and 16th lags of the REIT returns are significant. 
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Meanwhile, the Ljung-Box test results for square returns confirm that ARCH effect presents and return series 

have long memory.  

Based on the analysis above, we can conclude that the daily log return are stationary, nonnormal 

distributed and have long memory. All of these test results show that the REIT return series have rather 

complicated statistics properties. To overcome these difficulties, we use GARCH type models to estimate the 

volatility and ARMA model to estimate the mean. 

 

Methodology 

Defining Value-at-Risk 
VaR is such a quantity that might be lost in a portfolio of assets over a specific time period T with a 

specified small failure probability α. Here we set this time period as one day. Suppose a random variable X, 

which denotes the distribution of daily return in some financial asset, the α-quantile of the portfolio is defined to 

be the VaRα: 

                                                                    
(5) 

The VaRα is the largest value for X such that the probability of a loss over the time horizon T is less 

than α. Although we can choose the parameter α arbitrarily, it is normal to choose α ∈  {0.005, 0.01, 0.05}. 

Therefore the crux to estimate VaR accurately is in estimating the cut off return of VaRα. 

To estimate VaR accurately, it is essential to process accurate volatility estimates. In this context, we 

develop different ways to estimate volatility. When we find models to fit REIT return, we need to take the 

volatility clustering phenomenon in account. Bollerslevn (1986) [1] generalized ARCH model to GARCH 

model, which is able to capture the time-varying volatility. This GARCH model uses a linear function of the 

squared historical innovations to approximate conditional variance. But we cannot forget to mention drawbacks 

of this model, since it overlooks the leverage effect in REIT return’s volatility. The EGARCH, GARCH-GJR 

and APARCH models are applied here to show the conditional asymmetry properties. In this paper, we are 

focusing upon the use of these GARCH-type models to estimate and forecast daily VaR of the Real Estate 

Investment Trust (REIT) stock in fixed period time. 

 

Estimating µt+1 and σt+1 Using ARMA-GRACH-type Model 
Let {rt} be the daily log return of REIT. Let Ft be the historical information about the return process 

available up to time t. Since the volatility and leptokurtosis exists, we make an assumption that the conditional 

mean of rt fits an autoregressive average model AR(1) and the conditional volatility follows an univariate 

GARCH-type model. We give the representation of rt as follow. 

 

Where the innovation  are white noise process with zero mean and unit variance; the conditional mean is 

defined as  and the conditional volatility is . In this paper, we assume  

 follows normal and Student’s t-distribution respectively. 

Grach Model:  The Generalized ARCH (GARCH) model of Bollerslevn (1986) [1] is based on an infinite 

ARCH specification and it allows to impose nonlinear restrictions on parameters to reduce the number of them. 

The GARCH(p, q) model is given by:  

 

where p is the order of GARCH and q is the order of ARCH process, and  are parameters and we expect 

the sum of them is less than 1.  

French, Schwert and Stambaugh (1987) [2]; Pagan and Schwert (1990) [3]; Franses and Van Dijk 

(1996) [4] show that the basic GARCH(1, 1) model suits well in most financial time series. Furthermore, 

according to Brooks (2008), it is sufficient to capture all the volatility clustering in the data if we just set the lag 

order (1, 1). The GARCH(1, 1) model is given by: 
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(6) 

The GARCH-type models described above follows that positive and negative error terms have equal 

contribution to the volatility. However, we all know that the volatility tends to increase dramatically following 

bad news, according to Angabini and Wasiuzzaman (2011) [23]. Thereafter, the Exponential GARCH 

(EGARCH), GARCH-GJR and Asymmetric Power ARCH (APARCH) models are applied to capture the 

asymmetry in return volatility, i.e. leverage effect. 

EGRACH Model:  The Exponential GARCH model, introduced by Nelson (1991) [6] originally. For p, q > 0, 

the EGARCH (p, q) model is given by: 

                       
(7) 

The logarithmic form in Nelson’s EGARCH model makes it possible to relax the parameters. And the 

conditional variance is always positive even if the coefficients are negative. 

GRACH-GJR Model:  Glosten, Jagannatahan and Runkle (1993) [21] developed the GARCH-GJR model, which 

is another kind of asymmetric GARCH models. It is given by:  

                                   
(8) 

where α and β are constants, and I is an indicator function when ηt−i is negative. 

 

Aparch Model 
Asymmetric power ARCH (APARCH) is another asymmetric model, which was introduced by Ding 

Engle and Granger (1993) [22] and can be written as: 

                                   (9) 

This model captures the leverage effect by changing the error term into a more flexible varying 

exponent. 

We make an estimation of the following symmetric GARCH models: the GARCH(1, 1) model with 

normal distribution and Student’s t-distribution as well as the following asymmetric GARCH models like 

Egarch(1, 1) with normal distribution and Student’s t-distribution, GARCH-GJR model and APARCH model. 

The estimated results are shown as follows. 

 

Table Ⅲ: Estimation Results of Different Volatility Models for REIT 
GARCH Type Garch Egarch Egarch GARCH-GJR GARCH-GJR APARCH 

distribution Std normal Std normal Std normal 

 
0.0882 0.364 0.0678 0.0436 0.0700 0.0396 

 
-0.0457 -0.0415 -0.0431 -0.0375 -0.0426 -0.0363 

 
0.0141 0.0125 0.0023 0.0191 0.0120 0.0183 

 
0.1050 -0.0643 -0.0626 0.0524 0.0502 0.0926 

 
0.8940 0.9892 0.9935 0.8980 0.9076 0.9109 

 
 0.1789 0.0119 0.0862 0.0794 0.3439 

 
     1.3989 

log(L) 

-

4328.3
35 

-4362.463 -4324.104 -4355.499 -4320.949 -4352.581 

AIC 3.4800 3.5074 3.4774 3.5018 3.4749 3.5003 

BIC 3.4940 3.5214 3.4938 3.5158 3.4912 3.5166 

 



Garch Models In Value-At-Risk Estimation For Reit 

23 

Table Ⅲ demonstrates the results of all GARCH-type models. The log likelihood and AIC statistics 

shows the above specified GARCH models adequately capture the serial correlation in conditional means and 

variances. The nonlinear asymmetric models EGARCH, GARCHGJR and APARCH are used to capture the 

leverage effect. The coefficient γ1 in these models is statistically significant at 5% significant level, which 

implies the existence of asymmetry. Meanwhile, the positive value means the leverage effect exists. 

 

Table Ⅳ: Value-at-Risk in Different Models for REIT 
Garch 

Type 
Garch Egarch Egarch Garch-Gjr Garch-Gjr Aparch 

Distributio
n 

Std Normal Std Normal Std Normal 

Var0.01 -1.45 -1.46 -1.49 -1.43 -1.46 -1.48 

Var0.05 -0.911 -1.022 -0.947 -0.996 -0.93 -1.03 

 

 
Fig.5:  One-day-ahead VaR forecasts of REIT based on the GARCH-GJR model at quantile 1% and 5% 

 

We have forecasted the volatility for one-day-ahead on the basis of estimation of parameters in all 

models. The estimation of VaR of REIT at quantile 1% and 5% are shown in Figure 5. And the forecasted 

values of the VaR at quantile 1% and 5% are shown in Table Ⅳ. 

 

III. BACKTESTING 
To gauge a model’s accuracy and effectiveness, we choose to use backtest, which is a technique for 

approximating a model on historical data. In value at risk, backtesting is used to compare the predicted losses 

from the calculated value at risk with the actual losses realized at the end of the specified time horizon. This 

comparison identifies the periods where the value at risk is underestimated, i.e. where the original expected 

value at risk are less than the portfolio losses. The most popular two ways to backtest VaR are introduced by 

Kupiec (1995) [24] and Christoffersen (1998) [25]. 

 

UnConditional Coverage 
To count the number of VaR exception is the most common test of a VaR model. We can imply that 

the system overestimates risk if the number of exceptions is less than the selected confidence level. Denote x as 

the number of exceptions and T as the number of the observations, the failure rate is defined by x/T. If we fix α 

be the confidence level and let p = 1 − α, then the null hypothesis is that the expected proportion of exception is 

equal to α, which means that H0: x/T = α.  

Under the null hypothesis, the statistic function is given by: 

                               
(10) which is a Chi-square distribution with one degree of freedom. Therefore, we can reject H0 if the value of 

LR is greater than the critical value or the p-value is less than the significance level. 

 

Conditional Coverage 
The unconditional coverage tests only focus on the number of exception, whereas our expectation in 

theory is those exceptions can be spread evenly. Since occurrence of large losses is more likely to lead to 
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disastrous events, VaR users want to detect the clustering behavior of exceptions. Christoffersen (1998) [25] 

generalizes the Kupiec test by including a separate statistic for independence of exceptions. 

The test is proposed first by defining an indicator It satisfies: equals to 1 if VaR is exceeded and equals 

to 0 if VaR is not exceeded. Then define nij as the number of days when j occurred under the assumption that i 

occurred on the previous day. What’s more, the probability of observation of an exception on condition i is 

denoted by πi: 

                      
(11)From the definition, we imply the model is accurate if π0 = π1. The test statistic is given by: 

                                      
(12)We obtain a joint test which examines both properties of a great VaR model by combining LRuc and LRind, 

i.e. conditional coverage: 

                                                                
(13)where LRcc follows Chi-squared distribution with two degree of freedom. We reject the test if LRcc is 

greater than the critical value of χ
2
 distribution. 

 

Table Ⅴ: Backtesting Results of VaR for GARCH-type Models 
Garch 

Type 
Garch Egarch Egarch Garch-Gjr Garch-Gjr Aparch 

Distributi
on 

Std Normal Std Normal Std Normal 

Ee(Α=0.0

5) 
25 25 25 25 25 25 

Ae(Α=0.

05) 
35 32 33 30 30 32 

Lruc(Α=0.

05) 
2.613 1.903 2.459 0.992 0.992 1.903 

Lrcc(Α=0.

05) 
4.379 5.533 7.981 3.334 3.334 5.533 

Ee(Α=0.0

1) 
5 5 5 5 5 5 

Ae(Α=0.

01) 
9 11 10 11 10 11 

Lruc(Α=0.

01) 
3.756 5.419 3.914 5.419 3.914 5.419 

Lrcc(Α=0.

01) 
10.725 6.848 5.665 6.848 5.665 6.848 

 

According to the results in Table Ⅴ for REIT, all GARCH-type models pass both LRuc and LRcc tests. 

Furthermore, with minimum value of LRuc and LRcc, we can conclude that GARCH-GJR model has the best 

performance than others. 

 

IV. EMPIRICAL RESULTS AND DISCUSSIONS 
We used the autoregressive model to filter out the autocorrelation of the REIT in this paper. According 

to the graphs of ACF and PACF, we finger out that AR(1) model to calculate the mean of the time series. 

Following the minimum AIC value and description of the volatility clustering and asymmetry, EGARCH with 

Student t distribution outperforms other models. The volatility will decrease when the value rises since or all the 

coefficient γ is greater than 0 for all models. Meanwhile, for EGARCH with normal distribution, EGARCH with 

Student t distribution and APARCH model, the coefficient of  is greater than 0.9, which means the 

probability of current variance shock can still be captured in the future is over 90 percent. Table Ⅱ tells us that 

the daily log return does not follow normal distribution. As shown in Table Ⅴ, where the VaR’s level is 0.05, 

reveals that all GARCH-type models perform well since they all pass the LRuc and LRcc test. With a minimum 

value for LRuc and LRcc, we can reach the conclusion that GARCH-GJR model outperforms others. What we 

find is that we can get accurate estimation of VaR if we take some specialized facts such as fat tail, 

leptokurtosis, volatility clustering and asymmetry in consideration. 

 

V. CONCLUSIONS 
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In this paper we investigate some GARCH-type model for data set of Real Estate Investment Trust 

(REIT). Besides GARCH-GJR and APARCH model, we focus on GARCH and EGARCH with both normal and 

Student t distribution. Our findings reveal that the real estate daily log return is characterized by fat tail, 

volatility clustering and asymmetry. By using the backtesting of VaR, we find that GARCH-GJR(1, 1) model 

has the best performance. 
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