Seismic Analysis of Multi-StoreyBuildingwithPlus ShapeRCShear Wallsat The CenterinConcrete Frame Structure WithDifferentType of SoilCondition

*Mahdi Hosseini¹, Prof. N.V. Ramana Rao²

Ph.D. scholar student in Structural Engineering, Dept. of Civil Engineering, Jawaharlal Nehru Technological University Hyderabad (JNTUH), Hyderabad, Telangana, India 2Professor, Dept. of Civil Engineering, Jawaharlal Nehru Technological University Hyderabad (JNTUH), Hyderabad, & Director of National Institute of Technology Warangal, Telangana, India Corresponding Athor: Mahdi Hosseini¹

ABSTRACT: Shear walls provide large strength and stiffness to buildings in the direction of their orientation. which significantly reduces lateral sway of the building and thereby reduces damage to structure and its contents. Shear walls should be provided along preferably both length and width. Shear walls are analyzed to resist two types of forces: shear forces and uplift forces. Shear forces are created throughout the height of the wall between the top and bottom shear wall connections. Uplift forces exist on shear walls because the horizontal forces are applied to the top of the wall. These uplift forces try to lift up one end of the wall and push the other end down. In some cases, the uplift force is large enough to tip the wall over. The seismic motion that reaches a structure on the surface of the earth is influenced by local soil conditions. The subsurface soil layers underlying the building foundation may amplify the response of the building to earthquake motions originating in the bedrock. Three types soil are considered here:Hard soil Medium soil, softsoil. In this study 30 story building with plus (+) Shape RC Shear wall at the center in Concrete Frame Structure with fixed support conditions under different type of soil for earthquake zone V as per IS 1893 (part 1): 2002 in India are analyzed using software ETABS by Dynamic analysis (Response Spectrum method). All the analyses has been carried out as per the Indian Standard code books. This paper aims to Study the behaviour of high rise structure with dual system withPlus ShapeRC Shear Walls under different type of soil conditionwith seismic loading. Estimation of structural response such as; ,stiffness , lateral loads ,storey displacements, storey moment ,storey shear, storey drift , Pier Forces, column forces andMode shapes of shear wall is carried out.

Keywords: Response Spectrum method, Soft ,Medium&Hard Soil, Structural Response, Plus Shape Shear Wall, ETABS software

Date of Submission: 24 -11-2017 _____

Date of acceptance: 07-12-2017 _____

1.1 Background

I. INTRODUCTION

Shear walls in high seismic regions require special detailing. However, in past earthquakes, even buildings with sufficient amount of walls that were not specially detailed for seismic performance (but had enough well-distributed reinforcement) were saved from collapse. Shear walls are efficient, both in terms of construction cost and effectiveness in minimizing earthquake damage in structural and nonstructural elements (like glass windows and building contents). Shear walls provide large strength and stiffness to buildings in the direction of their orientation, which significantly reduces lateral sway of the building and thereby reduces damage to structure and its contents. Shear walls should be provided along preferably both length and width. Shear walls in buildings must be symmetrically located in plan to reduce ill-effects of twist in buildings. They could be placed symmetrically along one or both directions in plan. Buildings are designed primarily to serve the needs of an intended occupancy. One of the dominant design requirements is therefore the provision of an appropriate internal layout of buildings. Once the functional layout is established, one must develop a structural system that will satisfy the established design criteria as efficiently and economically as possible, while fitting into the architectural layout. The vital structural criteria are an adequate reserve of strength against failure, adequate lateral stiffness and an efficient performance during the service life of the buildings. In modern tall buildings, shear walls are commonly used as a vertical structural element for resisting the lateral loads that may be induced by the effect of wind and earthquakes. Shear walls of varying cross sections i.e. rectangular shapes to

more irregular cores such as channel, T, L, barbell shape, box etc. can be used. Provision of walls helps to divide an enclose space, whereas of cores to contain and convey services such as elevator.

1.2 Literature Review

Prajapati R.J. et al., (2013) carried out study on deflection in high rise buildings for different position of shear walls. It was observed that deflection for building with shear walls provided at the corners in both the directions was drastically less when compared with other models. Chandurkar P.P. et al., (2013) conducted a study on seismic analysis of RCC building with and without shear walls. They have selected a ten storied building located in zone II, zone III, zone IV and zone V. Parameters like Lateral displacement, story drift and total cost required for ground floor were calculated in both the cases. Bhat S.M. et al., (2013) carried out study on Eathquakebehaviour of buildings with and without shear walls. Parameters like Lateral displacement, story drift etc were found and compared with the bare frame model. Sardar S.J. et al., (2013) studied lateral displacement and inter-story drift on a square symmetric structure with walls at the centre and at the edges, and found that the presence of shear wall can affect the seismic behaviour of frame structure to large extent, and the shear wall increases the strength and stiffness of the structure.

Sagar K.et al., (2012) carried out linear dynamic analysis on two sixteen storey high buildings. It was concluded that shear walls are one of the most effective building elements in resisting lateral forces during earthquake. Providin shear walls in proper position minimizes effect and damages due to earthquake and winds.

Kumbhare P.S. et al., (2012) carried out a study on shear wall frame interaction systems and member forces. It was found that shear wall frame interaction systems are very effective in resisting lateral forces induced by earthquake. Placing shear wall away from center of gravity resulted in increase in the most of the members forces. It follows that shear walls should be coinciding with the centroid of the building.Rahman A. et al., (2012) studied on drift analysis due to earthquake load on tall structures. In this study regular shaped structures have been considered. Estimation of drift was carried out for rigid frame structure, coupled shear wall structure and wall frame structure.

Anshuman et al., (2011) conducted a research on solution of shear wall location in multi storey building. An earthquake load was calculated and applied to a fifteen storied building located in zone IV. It was observed that the top deflection was reduced and reached within the permissible deflection after providing the shear wall.Kameshwari B. et al., (2011) analyzed the effect of various configurations of shear walls on high-rise structure. The drift and inter-storey drift of the structure in the following configurations of shear wall panels was studied and was compared with that of bare frame. Diagonal shear wall configuration was found to be effective for structures in the earthquake prone areas.

Based on the literature review, the salient objective of the present study have been identified as

follows:

- behaviour of high rise structure with dual system with Plus shape RC Shear Wallswith seismic loading.
- To examine the effect of different types of soil (Hard, medium and Soft) on the overall interactive behaviour of the shear wall foundation soil system.
- The variation of maximum storey shear, storey moment of the models has been studied.
- The variation of storey drifts of the models has been studied
- ✤ The variation of displacement of the models has been studied
- The variation of Time period and frequency has been studied.
- The variation of maximum column axial force, maximum column shear force, maximum column moment and maximum column torsion of the model have been studied.
- The variation of Pier axial force, Pier shear force, Pier moment and Pier torsion of the models have been studied.

1.3Shear Wall Structure

The usefulness of shear walls in framing of buildings has long been recognized. Walls situated in advantageous positions in a building can form an efficient lateral-force-resisting system, simultaneously fulfilling other functional requirements. When a permanent and similar subdivision of floor areas in all stories is required as in the case of hotels or apartment buildings, numerous shear walls can be utilized not only for lateral force resistance but also to carry gravity loads. In such case, the floor by floor repetitive planning allows the walls to be vertically continuous which may serve simultaneously as excellent acoustic and fire insulators between the apartments. Shear walls may be planar but are often of L-, T-, I-, or U- shaped section to better suit the planning and to increase their flexural stiffness. The positions of shear walls within a building are usually dictated by functional requirements. These may or may not suit structural planning. The purpose of a building

and consequent allocation of floor space may dictate required arrangements of walls that can often be readily utilized for lateral force resistance. Building sites, architectural interests or client's desire may lead the positions of walls that are undesirable from a structural point of view. However, structural designers are often in the position to advice as to the most desirable locations for shear walls in order to optimize seismic resistance. The major structural considerations for individual shear walls will be aspects of symmetry in stiffness, torsional stability and available overturning capacity of the foundations (Paulay and Priestley, 1992).

1.4 Essentials Of Structural Systems For Seismic Resistance

The primary purpose of all structural members used in buildings is to support gravity loads. However, buildings may also be subjected to lateral forces due to wind and earthquakes. The effects of lateral forces in buildings will be more significant as the building height increases. All structural systems will not behave equally under seismic excitation. Aspects of structural configuration, symmetry, mass distribution and vertical regularity must be considered. In addition to that, the importance of strength, stiffness and ductility in relation to acceptable response must be evaluated in structural system (Paulay and Priestley, 1992).

The first task of the structural designer is to select the appropriate structural system for the satisfactory seismic performance of the building within the constraints dictated by architectural requirements. It is better where possible to discuss architect and structural engineer for alternative structural configuration at the earliest stage of concept development. Thus, undesirable geometry is not locked into the system before structural design is started.

Irregularities in buildings contribute to complexity of structural behavior. When not recognized, they may result in unexpected damage and even collapse of the structures. There are many possible sources of structural irregularities. Drastic changes in geometry, interruptions in load path, discontinuities in both strength and stiffness, disruption in critical region by openings and unusual proportion of members are few of the possibilities. The recognition of many of these irregularities and of conceptions for remedial measures for the mitigation of their undesired effects relies on sound understanding of structural behavior.

II. METHODOLOGY

Earthquake motion causes vibration of the structure leading to inertia forces. Thus a structure must be able to safely transmit the horizontal and the vertical inertia forces generated in the super structure through the foundation to the ground. Hence, for most of the ordinary structures, earthquake-resistant design requires ensuring that the structure has adequate lateral load carrying capacity. Seismic codes will guide a designer to safely design the structure for its intended purpose.

- 1. Dynamic analysis.
- 2. Response spectrum method.
- 3. Time history method.

2.1 Dynamic Analysis

Dynamic analysis shall be performed to obtain the design seismic force, and its distribution in different levels along the height of the building, and in the various lateral load resisting element, for the following buildings:

2.1.1 Regular buildings: Those greater than 40m in height in zones IV and V, those greater than 90m in height in zone II and III.

2.1.2 Irregular buildings: All framed buildings higher than 12m in zones IV and V, and those greater than 40m in height in zones II and III.

The analysis of model for dynamic analysis of buildings with unusual configuration should be such that it adequately models the types of irregularities present in the building configuration. Buildings with plan irregularities, as defined in Table 4 of IS code: 1893-2002 cannot be modeled for dynamic analysis. Dynamic analysis may be performed either by the TIME HISTORY METHOD or by the RESPONSE SPECTRUM METHOD .However in either method, the design base shear V_B shall be compared with a base shear V_B calculated using a fundamental period *Ta*. When V_B is less than V_B all the response quantities shall be multiplied by V_B / Vb The values of damping for a building may be taken as 2 and 5 percent of the critical, for the purpose of dynamic analysis of steel and reinforced concrete buildings, respectively.

2.2 Time History Method

The usage of this method shall be on an appropriate ground motion and shall be performed using accepted principles of dynamics. In this method, the mathematical model of the building is subjected to accelerations from earthquake records that represent the expected earthquake at the base of the structure.

2.3 Response Spectrum Method

The word spectrum in engineering conveys the idea that the response of buildings having a broad range of periods is summarized in a single graph. This method shall be performed using the design spectrum specified in code or by a site-specific design spectrum for a structure prepared at a project site. The values of damping for building may be taken as 2 and 5 percent of the critical, for the purposes of dynamic of steel and reinforce concrete buildings, respectively. For most buildings, inelastic response can be expected to occur during a major earthquake, implying that an inelastic analysis is more proper for design. However, in spite of the availability of nonlinear inelastic programs, they are not used in typical design practice because:

- 1- Their proper use requires knowledge of their inner workings and theories. design criteria, and
- 2- Result produced are difficult to interpret and apply to traditional design criteria , and
- 3- The necessary computations are expensive.

Therefore, analysis in practice typically use linear elastic procedures based on the response spectrum method. The response spectrum analysis is the preferred method because it is easier to use.

2.4 Modes to be Considered

The number of modes to be considered in the analysis should be such that the sum of the total modal masses of all modes considered is at least 90% of the total seismic mass and the missing mass correction beyond 33%. If modes with natural frequency beyond 33 Hz are to be considered, modal combination shall be carried out only for modes up to 33 Hz.

2.5 Computation of Dynamic Quantities

Buildings with regular ,or nominally irregular plan configuration may be modeled as a system of masses lumped at the floor levels with each mass having one degree of freedom, that of lateral displacement in the direction of consideration

2.6 Response Analysis of MDOF System

Multi degree of freedom (MDOF) systems are usually analyzed using Modal Analysis. This system when subjected to ground motion undergoes deformations in number of possible ways. These deformed shapes are known as modes of vibration or mode shapes. Each shape is vibrating with a particular natural frequency. Total unique modes for each MDOF system are equal to the possible degree of freedom of system.

2.7 Design Of Earthquake Resistant Structure Based On Codal Provisions

General principles and design philosophy for design of earthquake-resistant structure are as follows:

- a) The characteristics of seismic ground vibrations at any location depends upon the magnitude of earth quake, its depth of focus, distance from epicenter, characteristic of the path through which the waves travel, and the soil strata on which the structure stands. Ground motions are predominant in horizontal direction.
- b) Earthquake generated vertical forces, if significant, as in large spans where differential settlement is not allowed, must be considered.
- c) The response of a structure to the ground motions is a function of the nature of foundation soil, materials size and mode of construction of structures, and the duration and characteristic of ground motion.
- d) The design approach is to ensure that structures possess at least a minimum strength to withstand minor earthquake (DBE), which occur frequently, without damage; resist moderate earthquake without significant damage though some nonstructural damage may occur, and aims that structures withstand major earthquake (MCE) without collapse. Actual forces that appeared on structures are much greater then the design forces specified here, but ductility, arising due to inelastic material behavior and detailing, and over strength, arising from the additional reserve strength in structures over and above the design strength are relied upon to account for this difference in actual and design lateral forces.
- e) Reinforced and pre-stressed members shall be suitably designed to ensure that premature failure due to shear or bond does not occur, as per IS:456 and IS:1343.
- f) In steel structures, members and their connections should be so proportioned that high ductility is obtained.
- g) The soil structure interaction refers to the effect of the supporting foundation medium on the motion of structure. The structure interaction may not be considered in the seismic analysis for structures supporting on the rocks.
- h) The design lateral forces shall be considered in two orthogonal horizontal directions of the structures. For structures, which have lateral force resisting elements in two orthogonal directions only, design lateral force must be considered in one direction at a time. Structures having lateral resisting elements in two directions other than orthogonal shall be analyzed according to clause 2.3.2 IS 1893 (part 1) : 2002. Where both horizontal and vertical forces are taken into account, load combinations must be according to clause 2.3.3 IS

1893 (part 1) : 2002.

i) When a change in occupancy results in a structure being re-classified to a higher importance factor (I), the structure shall be confirm to the seismic requirements of the new structure with high importance factor.

III. MODELING OF BUILDING

3.1 Details of The Building

A symmetrical building of plan 38.5 m X 35.5 m located with location in zone V, India is considered. Four bays of length 7.5 m one bays of length 8.5 m along X - direction and Four bays of length 7.5 m one bays of length 5.5 m along Y - direction are provided. Shear Wall is provided at the center core of building model.

3.2 Load Combinations

As per IS 1893 (Part 1): 2002 Clause no. 6.3.1.2, the following load cases have to be considered for analysis: 1.5 (DL + IL)

 $\begin{array}{l} 1.2 \; (DL + IL \pm EL) \\ 1.5 \; (DL \pm EL) \\ 0.9 \; DL \pm 1.5 \; EL \end{array}$

 $0.9 \text{ DL} \pm 1.3 \text{ EL}$

Earthquake load must be considered for +X, +X, +Y and -Y directions. **Table 1**: Details of The Building

Tuble 1 · Details of The Dunding					
Building Parameters	Details				
Type of frame	Special RC moment resisting frame fixed at the base				
Building plan	38.5m X 35.5m				
Number of storeys	30				
Floor height	3.5 m				
Depth of Slab	225 mm				
Size of beam	$(300 \times 600) \text{ mm}$				
Size of column (exterior)	(1250×1250) mm up to story five				
Size of column (exterior)	(900×900) mm Above story five				
Size of column (interior)	(1250×1250) mm up to story ten				
Size of column (interior)	(900×900) mm Above story ten				
Spacing between frames	7.5-8.5 m along x - direction 7.5-5.5 m along y - direction				
Live load on floor	4 KN/m2				
Floor finish	2.5 KN/m2				
Wall load	25 KN/m				
Grade of Concrete	M 50 concrete				
Grade of Steel	Fe 500				
Thickness of shear wall	450 mm				
Seismic zone	V				
Density of concrete	25 KN/m3				
	Soft,Medium,Hard				
Type of soil	Soil Type I=Soft Soil				
Type of som	Soil Type II=Medium Soil				
	Soil Type III= Hard Soil				
Response spectra	As per IS 1893(Part-1):2002				
Damping of structure	5 percent				

Figure 2.3D view showing shear wall location

IV. RESULTS AND DISCUSSIONS

Table 2: Lateral Loads of Structure in Soft Soil, Medium Soil and Hard Soil in

X –Direction for load cases EQXP

			SOIL TYPE I	SOIL TYPE II	SOIL TYPE III			
Story	Elevation	Location	X-Dir	X-Dir	X-Dir			
	m		kN	kN	kN			
30TH	111	Тор	725.0746	986.1014	1210.8746			
29TH	107.5	Тор	735.3706	1000.104	1228.0688			
28TH	104	Тор	688.2655	936.0411	1149.4034			

27TH	100.5	Тор	642.7194	874.0984	1073.3415
26TH	97	Тор	598.7324	814.2761	999.8832
25TH	93.5	Тор	556.3045	756.5741	929.0284
24TH	90	Тор	515.4355	700.9923	860.7773
23RD	86.5	Тор	476.1256	647.5308	795.1297
22ND	83	Тор	438.3747	596.1896	732.0858
21ST	79.5	Тор	402.1829	546.9687	671.6454
20TH	76	Тор	367.5501	499.8681	613.8086
19TH	72.5	Тор	334.4763	454.8877	558.5754
18TH	69	Тор	302.9615	412.0277	505.9458
17TH	65.5	Тор	273.0058	371.2879	455.9197
16TH	62	Тор	244.6091	332.6684	408.4973
15TH	58.5	Тор	217.7715	296.1692	363.6784
14TH	55	Тор	192.4929	261.7903	321.4631
13TH	51.5	Тор	168.7733	229.5317	281.8514
12TH	48	Тор	146.6128	199.3934	244.8433
11TH	44.5	Тор	126.0113	171.3753	210.4388
10TH	41	Тор	108.2038	147.1571	180.7003
9TH	37.5	Тор	91.6609	124.6588	153.0737
8TH	34	Тор	75.3493	102.4751	125.8334
7TH	30.5	Тор	60.6347	82.4632	101.26
6TH	27	Тор	47.517	64.6231	79.3534
5TH	23.5	Тор	37.0427	50.3781	61.8614
4TH	20	Тор	27.6428	37.5942	46.1635
3RD	16.5	Тор	18.8144	25.5876	31.42
2ND	13	Тор	11.6791	15.8836	19.5041
1ST	9.5	Тор	6.2369	8.4822	10.4156
PLINTH	6	Тор	1.3465	1.8312	2.2486
Base	0	Тор	0	0	0

Seismic Analysis Of Multi-Storey Building With Plus Shape Rcshear Walls At The...

A plot for Lateral Loads of Structure in Soft Soil, Medium Soil and Hard Soil in X –Direction for load cases EQXP has been shown here

Graph 1: Lateral Loads of Structure in Soft Soil, Medium Soil and Hard Soil in X -Direction

Table 3:Stiffness of Structure in Soft Soil, Medium Soil and Hard Soil in X - Direction for load cases EQXP

			SOIL TYPE I	SOIL TYPE II	SOIL TYPE III
Story	Elevation	Location	X-Dir	X-Dir	X-Dir
	m		kN/m	kN/m	kN/m
30TH	111	Тор	143022.831	143022.831	143022.831
29TH	107.5	Тор	270359.127	270359.127	270359.127
28TH	104	Тор	381794.982	381794.982	381794.982
27TH	100.5	Тор	472732.209	472732.209	472732.209
26TH	97	Тор	545503.246	545503.246	545503.246
25TH	93.5	Тор	603792.812	603792.812	603792.812
24TH	90	Top	650454.136	650454.136	650454.136
23RD	86.5	Тор	688057.119	688057.119	688057.119

Seismic Analysis Of Multi-Storey Building With Plus Shape Reshear Walls At The...

22ND	83	Тор	718725.486	718725.486	718725.486
21ST	79.5	Тор	744162.046	744162.046	744162.046
20TH	76	Тор	765727.986	765727.986	765727.986
19TH	72.5	Тор	784518.418	784518.418	784518.418
18TH	69	Тор	801430.979	801430.979	801430.979
17TH	65.5	Тор	817225.311	817225.311	817225.311
16TH	62	Тор	832574.637	832574.637	832574.637
15TH	58.5	Тор	848111.52	848111.52	848111.52
14TH	55	Тор	864462.491	864462.491	864462.491
13TH	51.5	Тор	882365.473	882365.473	882365.473
12TH	48	Тор	902632.028	902632.028	902632.028
11TH	44.5	Тор	925075.51	925075.51	925075.51
10TH	41	Тор	956816.406	956816.406	956816.406
9TH	37.5	Тор	988643.743	988643.743	988643.743
8TH	34	Тор	1030418.09	1030418.09	1030418.09
7TH	30.5	Тор	1083371.397	1083371.397	1083371.397
6TH	27	Тор	1154692.733	1154692.733	1154692.733
5TH	23.5	Тор	1258596.787	1258596.787	1258596.787
4TH	20	Тор	1375721.385	1375721.385	1375721.385
3RD	16.5	Тор	1560244.267	1560244.267	1560244.267
2ND	13	Top	1857338.108	1857338.108	1857338.108
1ST	9.5	Top	2395459.119	2395459.119	2395459.119
PLINTH	6	Top	3052958.805	3052958.805	3052958.805
Base	0	Top	0	0	0

Table 4:Stiffness of Structure in Soft Soil, Medium Soil and Hard Soil in Y - Direction for load cases EQYP

		SOIL TYPE I	SOIL TYPE II	SOIL TYPE III	
Story	Elevation	Location	Y-Dir	Y-Dir	Y-Dir
	m		kN/m	kN/m	kN/m
30TH	111	Тор	164522.123	164522.123	164522.123
29TH	107.5	Тор	302993.412	302993.412	302993.412
28TH	104	Тор	408677.202	408677.202	408677.202
27TH	100.5	Тор	483340.501	483340.501	483340.501
26TH	97	Тор	535680.552	535680.552	535680.552
25TH	93.5	Тор	572640.814	572640.814	572640.814
24TH	90	Тор	599109.141	599109.141	599109.141
23RD	86.5	Тор	618482.871	618482.871	618482.871
22ND	83	Тор	633043.22	633043.22	633043.22
21ST	79.5	Тор	644330.251	644330.251	644330.251
20TH	76	Тор	653399.721	653399.721	653399.721
19TH	72.5	Тор	660994.311	660994.311	660994.311
18TH	69	Тор	667657.281	667657.281	667657.281
17TH	65.5	Тор	673808.885	673808.885	673808.885
16TH	62	Тор	679800.36	679800.36	679800.36
15TH	58.5	Тор	685957.017	685957.017	685957.017
14TH	55	Тор	692607.423	692607.423	692607.423
13TH	51.5	Тор	700142.534	700142.534	700142.534
12TH	48	Тор	709147.826	709147.826	709147.826
11TH	44.5	Тор	719304.159	719304.159	719304.159
10TH	41	Тор	736444.19	736444.19	736444.19
9TH	37.5	Тор	752520.322	752520.322	752520.322
8TH	34	Тор	774346.165	774346.165	774346.165
7TH	30.5	Тор	803524.748	803524.748	803524.748
6TH	27	Тор	844489.543	844489.543	844489.543
5TH	23.5	Тор	906254.456	906254.456	906254.456
4TH	20	Тор	973343.501	973343.501	973343.501
3RD	16.5	Тор	1080765.084	1080765.084	1080765.084
2ND	13	Тор	1262128.804	1262128.804	1262128.804
1ST	9.5	Тор	1611231.402	1611231.402	1611231.402
PLINTH	6	Тор	2029896.11	2029896.11	2029896.11
Base	0	Тор	0	0	0

Table 5:StoreyDisplacement of Structure in Soft Soil , Medium Soil and Hard Soil in X - Direction with load combination (DL+LL+EQXP)

SOIL TYPE I	SOIL TYPE II	SOIL TYPE III

			Story		
	Load		Maximum	Story Maximum	Story Maximum
Story	Case/Combo	Direction	Displacements	Displacements	Displacements
			mm	mm	mm
30TH	DLLLEQXP	Х	247.583	336.596	413.247
29TH	DLLLEQXP	Х	242.298	329.414	404.43
28TH	DLLLEQXP	X	236.611	321.685	394.942
27TH	DLLLEQXP	X	230.622	313.544	384.95
26TH	DLLLEQXP	X	224.275	304.917	374.358
25TH	DLLLEQXP	X	217.536	295.757	363.114
24TH	DLLLEQXP	Х	210.398	286.054	351.202
23RD	DLLLEQXP	Х	202.862	275.81	338.626
22ND	DLLLEQXP	Х	194.94	265.041	325.405
21ST	DLLLEQXP	Х	186.65	253.771	311.57
20TH	DLLLEQXP	Х	178.016	242.034	297.161
19TH	DLLLEQXP	Х	169.068	229.869	282.226
18TH	DLLLEQXP	Х	159.836	217.319	266.818
17TH	DLLLEQXP	Х	150.356	204.431	250.996
16TH	DLLLEQXP	Х	140.667	191.258	234.823
15TH	DLLLEQXP	Х	130.807	177.854	218.366
14TH	DLLLEQXP	Х	120.821	164.277	201.697
13TH	DLLLEQXP	Х	110.754	150.59	184.893
12TH	DLLLEQXP	Х	100.656	136.861	168.037
11TH	DLLLEQXP	Х	90.581	123.163	151.219
10TH	DLLLEQXP	Х	80.58	109.565	134.524
9TH	DLLLEQXP	Х	70.768	96.224	118.145
8TH	DLLLEQXP	Х	61.148	83.144	102.085
7TH	DLLLEQXP	Х	51.811	70.449	86.498
6TH	DLLLEQXP	Х	42.845	58.259	71.531
5TH	DLLLEQXP	Х	34.377	46.744	57.393
4TH	DLLLEQXP	X	26.571	36.13	44.362
3RD	DLLLEQXP	X	19.376	26.348	32.351
2ND	DLLLEQXP	X	12.981	17.651	21.673
1ST	DLLLEQXP	Х	7.564	10.286	12.63
PLINTH	DLLLEQXP	Х	3.951	4.831	5.241
BASE	DLLLEQXP	Х	0	0	0

Seismic Analysis Of Multi-Storey Building With Plus Shape Rcshear Walls At The...

A plot for StoreyDisplacement of Structure in Soft Soil , Medium Soil and Hard Soil in X - Direction with load combination (DL+LL+EQXP) has been shown here

Graph 2:StoreyDisplacement of Structure in Soft Soil, Medium Soil and Hard Soil in X - Direction

 Table 6:StoreyDisplacement of Structure in Soft Soil , Medium Soil and Hard Soil in Y – Direction with load combination (DL+LL+EQYP)

			SOIL TYPE I	SOIL TYPE II	SOIL TYPE III
Story	Load Case/Combo	Direction	Story Maximum Displacements	Story Maximum Displacements	Story Maximum Displacements
			mm	mm	mm

30TH DLLLEQYP Y 298.758 407.017 500.24 29TH DLLLEQYP Y 298.166 400.75 492.53 28TH DLLLEQYP Y 289.066 393.829 484.016 27TH DLLLEQYP Y 283.5 386.194 474.624 26TH DLLLEQYP Y 277.293 377.726 464.21 25TH DLLLEQYP Y 270.439 368.377 452.712 24TH DLLLEQYP Y 226.293 358.137 440.122 23RD DLLLEQYP Y 226.778 347.024 426.459 22ND DLLLEQYP Y 226.758 308.835 379.512 19TH DLLLEQYP Y 216.358 294.664 362.094 18TH DLLLEQYP Y 216.358 294.564 365.592 19TH DLLEQYP Y 194.239 264.527 325.054 16TH DLLEQYP Y 170.681 232.436						
29TH DLLLEQYP Y 294.166 400.75 492.53 28TH DLLLEQYP Y 289.096 393.829 484.016 27TH DLLLEQYP Y 283.5 386.194 474.624 26TH DLLLEQYP Y 277.293 377.726 464.21 25TH DLLLEQYP Y 270.439 368.377 452.712 24TH DLLLEQYP Y 262.93 358.137 440.122 23RD DLLLEQYP Y 226.09 335.071 411.763 21ST DLLLEQYP Y 226.758 308.835 379.512 19TH DLLLEQYP Y 205.503 279.874 343.915 17TH DLLLEQYP Y 205.503 279.874 343.915 17TH DLLLEQYP Y 194.239 264.527 325.054 16TH DLLLEQYP Y 170.681 232.436 285.613 14TH DLLLEQYP Y 170.681 232.43	30TH	DLLLEQYP	Y	298.758	407.017	500.24
28TH DLLLEQYP Y 289.096 393.829 484.016 27TH DLLLEQYP Y 283.5 386.194 474.624 26TH DLLLEQYP Y 277.293 377.726 464.21 25TH DLLLEQYP Y 270.439 368.377 452.712 24TH DLLLEQYP Y 262.93 358.137 440.122 23RD DLLLEQYP Y 264.09 335.071 411.763 21ST DLLLEQYP Y 226.656 322.324 396.093 20TH DLLLEQYP Y 226.758 308.835 379.512 19TH DLLLEQYP Y 226.758 308.835 379.512 19TH DLLLEQYP Y 216.358 294.664 362.094 18TH DLLLEQYP Y 194.239 264.527 325.054 16TH DLLLEQYP Y 194.239 264.527 325.054 15TH DLLLEQYP Y 158.489 215.	29TH	DLLLEQYP	Y	294.166	400.75	492.53
27TH DLLLEQYP Y 283.5 386.194 474.624 26TH DLLLEQYP Y 277.293 377.726 464.21 25TH DLLLEQYP Y 270.439 368.377 452.712 24TH DLLLEQYP Y 262.93 358.137 440.122 23RD DLLLEQYP Y 254.778 347.024 426.459 22ND DLLLEQYP Y 236.656 322.324 396.093 20TH DLLEQYP Y 226.758 308.835 379.512 19TH DLLEQYP Y 216.358 294.664 362.094 18TH DLLEQYP Y 205.503 279.874 343.915 17TH DLLEQYP Y 194.239 264.527 325.054 16TH DLLEQYP Y 170.681 232.436 285.613 14TH DLLEQYP Y 158.489 215.828 205.204 13TH DLLEQYP Y 120.921 164.66 <td>28TH</td> <td>DLLLEQYP</td> <td>Y</td> <td>289.096</td> <td>393.829</td> <td>484.016</td>	28TH	DLLLEQYP	Y	289.096	393.829	484.016
26TH DLLLEQYP Y 277.293 377.726 464.21 2STH DLLLEQYP Y 270.439 368.377 452.712 24TH DLLLEQYP Y 262.93 358.137 440.122 23RD DLLLEQYP Y 254.778 347.024 426.459 22ND DLLLEQYP Y 236.656 322.324 396.093 20TH DLLLEQYP Y 226.758 308.835 379.512 19TH DLLLEQYP Y 216.358 294.664 362.094 18TH DLLEQYP Y 205.503 279.874 343.915 17TH DLLEQYP Y 194.239 264.527 325.054 16TH DLLEQYP Y 182.615 248.692 305.592 15TH DLLEQYP Y 158.489 215.828 265.204 13TH DLLEQYP Y 146.092 198.943 244.453 12TH DLLEQYP Y 108.27 147.429<	27TH	DLLLEQYP	Y	283.5	386.194	474.624
25TH DLLLEQYP Y 270.439 368.377 452.712 24TH DLLLEQYP Y 262.93 358.137 440.122 23RD DLLLEQYP Y 254.778 347.024 426.459 22ND DLLLEQYP Y 236.656 322.324 396.093 20TH DLLLEQYP Y 226.758 308.835 379.512 19TH DLLLEQYP Y 226.558 308.835 379.512 19TH DLLLEQYP Y 205.503 279.874 343.915 17TH DLLLEQYP Y 194.239 264.527 325.054 16TH DLLLEQYP Y 182.615 248.692 305.592 15TH DLLLEQYP Y 170.681 232.436 285.613 14TH DLLLEQYP Y 146.092 198.943 244.453 12TH DLLLEQYP Y 108.27 147.429 181.15 9TH DLLLEQYP Y 108.27 147.	26TH	DLLLEQYP	Y	277.293	377.726	464.21
24TH DLLLEQYP Y 262.93 358.137 440.122 23RD DLLLEQYP Y 254.778 347.024 426.459 22ND DLLLEQYP Y 246.009 335.071 411.763 21ST DLLLEQYP Y 236.656 322.324 396.093 20TH DLLLEQYP Y 226.758 308.835 379.512 19TH DLLLEQYP Y 226.758 308.835 379.512 19TH DLLLEQYP Y 226.503 279.874 343.915 17TH DLLLEQYP Y 194.239 264.527 325.054 16TH DLLLEQYP Y 170.681 232.436 285.613 14TH DLLLEQYP Y 170.681 232.436 285.613 14TH DLLLEQYP Y 133.548 181.858 223.457 13TH DLLLEQYP Y 108.27 147.429 181.15 9TH DLLLEQYP Y 108.27 147.	25TH	DLLLEQYP	Y	270.439	368.377	452.712
23RD DLLLEQYP Y 254.778 347.024 426.459 22ND DLLLEQYP Y 246.009 335.071 411.763 21ST DLLLEQYP Y 236.656 322.324 396.093 20TH DLLLEQYP Y 226.758 308.835 379.512 19TH DLLLEQYP Y 216.358 294.664 362.094 18TH DLLLEQYP Y 216.358 294.664 362.094 18TH DLLLEQYP Y 194.239 264.527 325.054 16TH DLLLEQYP Y 170.681 232.436 285.613 14TH DLLLEQYP Y 158.489 215.828 265.204 13TH DLLLEQYP Y 133.548 181.858 223.457 11TH DLLLEQYP Y 120.921 164.66 202.324 10TH DLLLEQYP Y 108.27 147.429 181.15 9TH DLLLEQYP Y 95.744 130.	24TH	DLLLEQYP	Y	262.93	358.137	440.122
22ND DLLLEQYP Y 246.009 335.071 411.763 21ST DLLLEQYP Y 236.656 322.324 396.093 20TH DLLLEQYP Y 226.758 308.835 379.512 19TH DLLLEQYP Y 216.358 294.664 362.094 18TH DLLLEQYP Y 205.503 279.874 343.915 17TH DLLLEQYP Y 194.239 264.527 325.054 16TH DLLLEQYP Y 182.615 248.692 305.592 15TH DLLLEQYP Y 170.681 232.436 285.613 14TH DLLLEQYP Y 146.092 198.943 244.453 12TH DLLLEQYP Y 120.921 164.66 202.324 10TH DLLLEQYP Y 120.921 164.66 202.324 10TH DLLEQYP Y 95.744 130.371 160.188 8TH DLLEQYP Y 95.342 80.798	23RD	DLLLEQYP	Y	254.778	347.024	426.459
21ST DLLLEQYP Y 236.656 322.324 396.093 20TH DLLLEQYP Y 226.758 308.835 379.512 19TH DLLLEQYP Y 216.358 294.664 362.094 18TH DLLLEQYP Y 205.503 279.874 343.915 17TH DLLLEQYP Y 194.239 264.527 325.054 16TH DLLLEQYP Y 182.615 248.692 305.592 15TH DLLLEQYP Y 170.681 232.436 285.613 14TH DLLLEQYP Y 158.489 215.828 265.204 13TH DLLLEQYP Y 146.092 198.943 244.453 12TH DLLLEQYP Y 120.921 164.66 202.324 10TH DLLLEQYP Y 108.27 147.429 181.15 9TH DLLLEQYP Y 95.744 130.371 160.188 8TH DLLEQYP Y 59.342 80.798<	22ND	DLLLEQYP	Y	246.009	335.071	411.763
20TH DLLLEQYP Y 226.758 308.835 379.512 19TH DLLLEQYP Y 216.358 294.664 362.094 18TH DLLLEQYP Y 205.503 279.874 343.915 17TH DLLLEQYP Y 194.239 264.527 325.054 16TH DLLLEQYP Y 182.615 248.692 305.592 15TH DLLLEQYP Y 170.681 232.436 285.613 14TH DLLLEQYP Y 170.681 232.436 285.613 13TH DLLLEQYP Y 146.092 198.943 244.453 13TH DLLLEQYP Y 120.921 164.66 202.324 10TH DLLLEQYP Y 120.921 164.66 202.324 10TH DLLLEQYP Y 95.744 130.371 160.188 8TH DLLLEQYP Y 95.342 80.798 99.273 5TH DLLLEQYP Y 59.342 80.798 </td <td>21ST</td> <td>DLLLEQYP</td> <td>Y</td> <td>236.656</td> <td>322.324</td> <td>396.093</td>	21ST	DLLLEQYP	Y	236.656	322.324	396.093
19TH DLLLEQYP Y 216.358 294.664 362.094 18TH DLLLEQYP Y 205.503 279.874 343.915 17TH DLLLEQYP Y 194.239 264.527 325.054 16TH DLLLEQYP Y 182.615 248.692 305.592 15TH DLLLEQYP Y 170.681 232.436 285.613 14TH DLLLEQYP Y 158.489 215.828 265.204 13TH DLLLEQYP Y 146.092 198.943 244.453 12TH DLLLEQYP Y 133.548 181.858 223.457 11TH DLLEQYP Y 120.921 164.66 202.324 10TH DLLEQYP Y 108.27 147.429 181.15 9TH DLLLEQYP Y 95.744 130.371 160.188 8TH DLLLEQYP Y 83.342 113.481 139.433 7TH DLLLEQYP Y 59.342 80.798 <td>20TH</td> <td>DLLLEQYP</td> <td>Y</td> <td>226.758</td> <td>308.835</td> <td>379.512</td>	20TH	DLLLEQYP	Y	226.758	308.835	379.512
18TH DLLLEQYP Y 205.503 279.874 343.915 17TH DLLLEQYP Y 194.239 264.527 325.054 16TH DLLLEQYP Y 182.615 248.692 305.592 15TH DLLLEQYP Y 170.681 232.436 285.613 14TH DLLLEQYP Y 158.489 215.828 265.204 13TH DLLLEQYP Y 133.548 181.858 223.457 11TH DLLLEQYP Y 120.921 164.66 202.324 10TH DLLLEQYP Y 108.27 147.429 181.15 9TH DLLLEQYP Y 95.744 130.371 160.188 8TH DLLEQYP Y 83.342 113.481 139.433 7TH DLLLEQYP Y 59.342 80.798 99.273 5TH DLLLEQYP Y 48.031 65.395 80.347 4TH DLLLEQYP Y 37.527 46.106 <	19TH	DLLLEQYP	Y	216.358	294.664	362.094
17TH DLLLEQYP Y 194.239 264.527 325.054 16TH DLLLEQYP Y 182.615 248.692 305.592 15TH DLLLEQYP Y 170.681 232.436 285.613 14TH DLLLEQYP Y 158.489 215.828 265.204 13TH DLLLEQYP Y 133.548 181.858 223.457 11TH DLLLEQYP Y 133.548 181.858 223.457 11TH DLLLEQYP Y 108.27 147.429 181.15 9TH DLLLEQYP Y 108.27 147.429 181.15 9TH DLLLEQYP Y 95.744 130.371 160.188 8TH DLLLEQYP Y 83.342 113.481 139.433 7TH DLLLEQYP Y 59.342 80.798 99.273 5TH DLLLEQYP Y 48.031 65.395 80.347 4TH DLLLEQYP Y 37.459 50.999	18TH	DLLLEQYP	Y	205.503	279.874	343.915
16TH DLLLEQYP Y 182.615 248.692 305.592 15TH DLLLEQYP Y 170.681 232.436 285.613 14TH DLLLEQYP Y 158.489 215.828 265.204 13TH DLLLEQYP Y 146.092 198.943 244.453 12TH DLLLEQYP Y 133.548 181.858 223.457 11TH DLLLEQYP Y 108.27 147.429 181.15 9TH DLLLEQYP Y 95.744 130.371 160.188 8TH DLLLEQYP Y 83.342 113.481 139.433 7TH DLLLEQYP Y 59.342 80.798 99.273 5TH DLLLEQYP Y 48.031 65.395 80.347 4TH DLLLEQYP Y 37.459 50.999 62.659 3RD DLLLEQYP Y 27.565 37.527 46.106 2ND DLLLEQYP Y 18.609 25.333 <td< td=""><td>17TH</td><td>DLLLEQYP</td><td>Y</td><td>194.239</td><td>264.527</td><td>325.054</td></td<>	17TH	DLLLEQYP	Y	194.239	264.527	325.054
15TH DLLLEQYP Y 170.681 232.436 285.613 14TH DLLLEQYP Y 158.489 215.828 265.204 13TH DLLLEQYP Y 146.092 198.943 244.453 12TH DLLLEQYP Y 133.548 181.858 223.457 11TH DLLLEQYP Y 120.921 164.66 202.324 10TH DLLLEQYP Y 108.27 147.429 181.15 9TH DLLLEQYP Y 95.744 130.371 160.188 8TH DLLLEQYP Y 83.342 113.481 139.433 7TH DLLLEQYP Y 71.167 96.901 119.061 6TH DLLLEQYP Y 48.031 65.395 80.347 4TH DLLLEQYP Y 37.459 50.999 62.659 3RD DLLLEQYP Y 27.565 37.527 46.106 2ND DLLLEQYP Y 18.609 25.333 <td< td=""><td>16TH</td><td>DLLLEQYP</td><td>Y</td><td>182.615</td><td>248.692</td><td>305.592</td></td<>	16TH	DLLLEQYP	Y	182.615	248.692	305.592
14TH DLLLEQYP Y 158.489 215.828 265.204 13TH DLLLEQYP Y 146.092 198.943 244.453 12TH DLLLEQYP Y 133.548 181.858 223.457 11TH DLLLEQYP Y 120.921 164.66 202.324 10TH DLLLEQYP Y 108.27 147.429 181.15 9TH DLLLEQYP Y 95.744 130.371 160.188 8TH DLLLEQYP Y 83.342 113.481 139.433 7TH DLLLEQYP Y 71.167 96.901 119.061 6TH DLLLEQYP Y 59.342 80.798 99.273 5TH DLLLEQYP Y 48.031 65.395 80.347 4TH DLLLEQYP Y 37.459 50.999 62.659 3RD DLLLEQYP Y 27.565 37.527 46.106 2ND DLLLEQYP Y 10.901 14.839 18.	15TH	DLLLEQYP	Y	170.681	232.436	285.613
13TH DLLLEQYP Y 146.092 198.943 244.453 12TH DLLLEQYP Y 133.548 181.858 223.457 11TH DLLLEQYP Y 120.921 164.66 202.324 10TH DLLLEQYP Y 108.27 147.429 181.15 9TH DLLLEQYP Y 95.744 130.371 160.188 8TH DLLLEQYP Y 83.342 113.481 139.433 7TH DLLLEQYP Y 71.167 96.901 119.061 6TH DLLLEQYP Y 59.342 80.798 99.273 5TH DLLLEQYP Y 37.459 50.999 62.659 3RD DLLLEQYP Y 27.565 37.527 46.106 2ND DLLLEQYP Y 18.609 25.333 31.123 1ST DLLLEQYP Y 10.901 14.839 18.23 PLINTH DLLLEQXP Y 2.443 3.614 4.39 <td>14TH</td> <td>DLLLEQYP</td> <td>Y</td> <td>158.489</td> <td>215.828</td> <td>265.204</td>	14TH	DLLLEQYP	Y	158.489	215.828	265.204
12TH DLLLEQYP Y 133.548 181.858 223.457 11TH DLLLEQYP Y 120.921 164.66 202.324 10TH DLLLEQYP Y 108.27 147.429 181.15 9TH DLLLEQYP Y 95.744 130.371 160.188 8TH DLLLEQYP Y 83.342 113.481 139.433 7TH DLLLEQYP Y 71.167 96.901 119.061 6TH DLLLEQYP Y 59.342 80.798 99.273 5TH DLLLEQYP Y 48.031 65.395 80.347 4TH DLLLEQYP Y 37.459 50.999 62.659 3RD DLLLEQYP Y 27.565 37.527 46.106 2ND DLLLEQYP Y 18.609 25.333 31.123 1ST DLLLEQYP Y 10.901 14.839 18.23 PLINTH DLLLEQXP Y 0 0 0 </td <td>13TH</td> <td>DLLLEQYP</td> <td>Y</td> <td>146.092</td> <td>198.943</td> <td>244.453</td>	13TH	DLLLEQYP	Y	146.092	198.943	244.453
11TH DLLLEQYP Y 120.921 164.66 202.324 10TH DLLLEQYP Y 108.27 147.429 181.15 9TH DLLLEQYP Y 95.744 130.371 160.188 8TH DLLLEQYP Y 83.342 113.481 139.433 7TH DLLLEQYP Y 71.167 96.901 119.061 6TH DLLLEQYP Y 59.342 80.798 99.273 5TH DLLLEQYP Y 48.031 65.395 80.347 4TH DLLLEQYP Y 37.459 50.999 62.659 3RD DLLLEQYP Y 27.565 37.527 46.106 2ND DLLLEQYP Y 18.609 25.333 31.123 1ST DLLLEQYP Y 10.901 14.839 18.23 PLINTH DLLLEQXP Y 0 0 0	12TH	DLLLEQYP	Y	133.548	181.858	223.457
10TH DLLLEQYP Y 108.27 147.429 181.15 9TH DLLLEQYP Y 95.744 130.371 160.188 8TH DLLLEQYP Y 83.342 113.481 139.433 7TH DLLLEQYP Y 71.167 96.901 119.061 6TH DLLLEQYP Y 59.342 80.798 99.273 5TH DLLLEQYP Y 48.031 65.395 80.347 4TH DLLLEQYP Y 37.459 50.999 62.659 3RD DLLLEQYP Y 18.609 25.333 31.123 1ST DLLLEQYP Y 10.901 14.839 18.23 PLINTH DLLLEQXP Y 0 0 0	11TH	DLLLEQYP	Y	120.921	164.66	202.324
9TH DLLLEQYP Y 95.744 130.371 160.188 8TH DLLLEQYP Y 83.342 113.481 139.433 7TH DLLLEQYP Y 71.167 96.901 119.061 6TH DLLLEQYP Y 59.342 80.798 99.273 5TH DLLLEQYP Y 48.031 65.395 80.347 4TH DLLLEQYP Y 37.459 50.999 62.659 3RD DLLLEQYP Y 27.565 37.527 46.106 2ND DLLLEQYP Y 18.609 25.333 31.123 1ST DLLLEQYP Y 10.901 14.839 18.23 PLINTH DLLLEQXP Y 0 0 0	10TH	DLLLEQYP	Y	108.27	147.429	181.15
8TH DLLLEQYP Y 83.342 113.481 139.433 7TH DLLLEQYP Y 71.167 96.901 119.061 6TH DLLLEQYP Y 59.342 80.798 99.273 5TH DLLLEQYP Y 48.031 65.395 80.347 4TH DLLLEQYP Y 37.459 50.999 62.659 3RD DLLLEQYP Y 27.565 37.527 46.106 2ND DLLLEQYP Y 18.609 25.333 31.123 1ST DLLLEQYP Y 10.901 14.839 18.23 PLINTH DLLLEQXP Y 0 0 0	9TH	DLLLEQYP	Y	95.744	130.371	160.188
7TH DLLLEQYP Y 71.167 96.901 119.061 6TH DLLLEQYP Y 59.342 80.798 99.273 5TH DLLLEQYP Y 48.031 65.395 80.347 4TH DLLLEQYP Y 37.459 50.999 62.659 3RD DLLLEQYP Y 27.565 37.527 46.106 2ND DLLLEQYP Y 18.609 25.333 31.123 1ST DLLLEQYP Y 10.901 14.839 18.23 PLINTH DLLLEQXP Y 0 0 0	8TH	DLLLEQYP	Y	83.342	113.481	139.433
6TH DLLLEQYP Y 59.342 80.798 99.273 5TH DLLLEQYP Y 48.031 65.395 80.347 4TH DLLLEQYP Y 37.459 50.999 62.659 3RD DLLLEQYP Y 27.565 37.527 46.106 2ND DLLLEQYP Y 18.609 25.333 31.123 1ST DLLLEQYP Y 10.901 14.839 18.23 PLINTH DLLLEQXP Y 0 0 0	7TH	DLLLEQYP	Y	71.167	96.901	119.061
5TH DLLLEQYP Y 48.031 65.395 80.347 4TH DLLLEQYP Y 37.459 50.999 62.659 3RD DLLLEQYP Y 27.565 37.527 46.106 2ND DLLLEQYP Y 18.609 25.333 31.123 1ST DLLLEQYP Y 10.901 14.839 18.23 PLINTH DLLLEQXP Y 2.443 3.614 4.39 BASE DLLLEQXP Y 0 0 0	6TH	DLLLEQYP	Y	59.342	80.798	99.273
4TH DLLLEQYP Y 37.459 50.999 62.659 3RD DLLLEQYP Y 27.565 37.527 46.106 2ND DLLLEQYP Y 18.609 25.333 31.123 1ST DLLLEQYP Y 10.901 14.839 18.23 PLINTH DLLLEQXP Y 2.443 3.614 4.39 BASE DLLLEQXP Y 0 0 0	5TH	DLLLEQYP	Y	48.031	65.395	80.347
3RD DLLLEQYP Y 27.565 37.527 46.106 2ND DLLLEQYP Y 18.609 25.333 31.123 1ST DLLLEQYP Y 10.901 14.839 18.23 PLINTH DLLLEQXP Y 2.443 3.614 4.39 BASE DLLLEQXP Y 0 0 0	4TH	DLLLEQYP	Y	37.459	50.999	62.659
2ND DLLLEQYP Y 18.609 25.333 31.123 1ST DLLLEQYP Y 10.901 14.839 18.23 PLINTH DLLLEQXP Y 2.443 3.614 4.39 BASE DLLLEQXP Y 0 0 0	3RD	DLLLEQYP	Y	27.565	37.527	46.106
1ST DLLLEQYP Y 10.901 14.839 18.23 PLINTH DLLLEQXP Y 2.443 3.614 4.39 BASE DLLLEQXP Y 0 0 0	2ND	DLLLEQYP	Y	18.609	25.333	31.123
PLINTH DLLLEQXP Y 2.443 3.614 4.39 BASE DLLLEQXP Y 0 0 0	1ST	DLLLEQYP	Y	10.901	14.839	18.23
BASE DLLLEQXP Y 0 0 0	PLINTH	DLLLEQXP	Y	2.443	3.614	4.39
	BASE	DLLLEQXP	Y	0	0	0

Seismic Analysis Of Multi-Storey Building With Plus Shape Rcshear Walls At The...

A plot for StoreyDisplacement of Structure in Soft Soil, Medium Soil and Hard Soil in Y - Direction with load combination (DL+LL+EQYP) has been shown here

Graph 3: StoreyDisplacement of Structure in Soft Soil, Medium Soil and Hard Soil in Y – DirectionFor both X and Y directions, the behaviour of the graph is similar for model in Soft Soil, Medium Soil and Hard Soil as shown. The order of maximum storey displacement in both the directions for the models is same.

Table 7:StoreyDrifts of Structure in Soft Soil , Medium Soil and Hard Soil in X - Direction with load combination (DL+LL+EQXP)

	· · · · · · · · · · · · · · · · · · ·						
			SOIL TYPE I	SOIL TYPE II	SOIL TYPE III		
Story	Elevation	Location	X-Dir	X-Dir	X-Dir		
30TH	111	Тор	0.001515	0.002059	0.002527		
29TH	107.5	Тор	0.001625	0.002208	0.002711		

28TH	104	Тор	0.001711	0.002326	0.002855
27TH	100.5	Тор	0.001814	0.002465	0.003026
26TH	97	Тор	0.001925	0.002617	0.003213
25TH	93.5	Тор	0.00204	0.002772	0.003403
24TH	90	Тор	0.002153	0.002927	0.003593
23RD	86.5	Тор	0.002263	0.003077	0.003777
22ND	83	Тор	0.002369	0.00322	0.003953
21ST	79.5	Тор	0.002467	0.003353	0.004117
20TH	76	Тор	0.002557	0.003476	0.004267
19TH	72.5	Тор	0.002638	0.003586	0.004402
18TH	69	Тор	0.002708	0.003682	0.004521
17TH	65.5	Тор	0.002768	0.003764	0.004621
16TH	62	Тор	0.002817	0.00383	0.004702
15TH	58.5	Тор	0.002853	0.003879	0.004762
14TH	55	Тор	0.002876	0.003911	0.004801
13TH	51.5	Тор	0.002885	0.003923	0.004816
12TH	48	Тор	0.002879	0.003914	0.004805
11TH	44.5	Тор	0.002858	0.003885	0.00477
10TH	41	Тор	0.002803	0.003812	0.00468
9TH	37.5	Тор	0.002749	0.003737	0.004588
8TH	34	Тор	0.002668	0.003627	0.004454
7TH	30.5	Тор	0.002562	0.003483	0.004276
6TH	27	Тор	0.00242	0.00329	0.004039
5TH	23.5	Тор	0.00223	0.003032	0.003723
4TH	20	Тор	0.002056	0.002795	0.003432
3RD	16.5	Тор	0.001827	0.002485	0.003051
2ND	13	Тор	0.001548	0.002104	0.002584
1ST	9.5	Тор	0.00122	0.001656	0.002031
PLINTH	6	Тор	0.00056	0.00076	0.000932
Base	0	Тор	0	0	0

Seismic Analysis Of Multi-Storey Building With Plus Shape Rcshear Walls At The...

A plot for StoreyDrifts of Structure in Soft Soil, Medium Soil and Hard Soil in X - Direction with load combination (DL+LL+EQXP) has been shown here

Graph 4:StoreyDrifts of Structure in Soft Soil, Medium Soil and Hard Soil in X - Direction

 Table 8:StoreyDrifts
 of Structure in Soft Soil , Medium Soil and Hard Soil in Y - Direction with load combination (DL+LL+EQYP)

		SOIL TYPE I	SOIL TYPE II	SOIL TYPE III	
Story	Elevation	Location	Y-Dir	Y-Dir	Y-Dir
30TH	111	Тор	0.001312	0.001791	0.002203
29TH	107.5	Тор	0.001449	0.001977	0.002433
28TH	104	Тор	0.001599	0.002182	0.002683
27TH	100.5	Тор	0.001773	0.002419	0.002976
26TH	97	Тор	0.001958	0.002671	0.003285
25TH	93.5	Тор	0.002145	0.002926	0.003597
24TH	90	Top	0.002329	0.003175	0.003904
23RD	86.5	Top	0.002505	0.003415	0.004199

22ND	83	Тор	0.002672	0.003642	0.004477
21ST	79.5	Тор	0.002828	0.003854	0.004737
20TH	76	Тор	0.002971	0.004049	0.004977
19TH	72.5	Тор	0.003102	0.004226	0.005194
18TH	69	Тор	0.003218	0.004385	0.005389
17TH	65.5	Тор	0.003321	0.004524	0.005561
16TH	62	Тор	0.00341	0.004645	0.005708
15TH	58.5	Тор	0.003483	0.004745	0.005831
14TH	55	Тор	0.003542	0.004824	0.005929
13TH	51.5	Тор	0.003584	0.004882	0.005999
12TH	48	Тор	0.003608	0.004914	0.006038
11TH	44.5	Тор	0.003615	0.004923	0.00605
10TH	41	Тор	0.003579	0.004874	0.005989
9TH	37.5	Тор	0.003544	0.004826	0.00593
8TH	34	Тор	0.003478	0.004737	0.005821
7TH	30.5	Тор	0.003379	0.004601	0.005654
6TH	27	Тор	0.003232	0.004401	0.005407
5TH	23.5	Тор	0.003021	0.004113	0.005054
4TH	20	Тор	0.002827	0.003849	0.004729
3RD	16.5	Тор	0.002559	0.003484	0.004281
2ND	13	Тор	0.002202	0.002998	0.003684
1ST	9.5	Тор	0.001748	0.002376	0.002917
PLINTH	6	Тор	0.00081	0.001102	0.001354
Base	0	Тор	0	0	0

Seismic Analysis Of Multi-Storey Building With Plus Shape Rcshear Walls At The...

A plot for StoreyDrifts of Structure in Soft Soil, Medium Soil and Hard Soil in Y - Direction with load combination (DL+LL+EQYP) has been shown here

Graph 5:StoreyDrifts of Structure in Soft Soil, Medium Soil and Hard Soil in Y - Direction

As per Indian standard, Criteria for earthquake resistant design of structures, IS 1893 (Part 1) : 2002, the story drift in any story due to service load shall not exceed 0.004 times the story height. The height of the each storey is 3.5 m. So, the drift limitation as per IS 1893 (part 1) : 2002 is 0.004 X 3.5 m = 14 mm. The model show a similar behaviour for storey drifts as shown in graph.

 Table 9: Storey Moment of Structure in Soft Soil , Medium Soil and Hard Soil in X - Direction with load combination 1.2(DL+LL+EQXP)

			SOIL TYPE I	SOIL TYPE II	SOIL TYPE III	
Story	Elevation Location		X-Dir	X-Dir	X-Dir	
	m		kN-m	kN-m	kN-m	
30TH	111	Top	465614.6719	465614.6719	465614.6719	
29TH	107.5	Top	995789.2594	995789.2594	995789.2594	
28TH	104	Top	1525964	1525964	1525964	
27TH	100.5	Top	2056138	2056138	2056138	
26TH	97	Тор	2586313	2586313	2586313	
25TH	93.5	Тор	3116488	3116488	3116488	
24TH	90	Тор	3646662	3646662	3646662	

23RD	86.5	Тор	4176837	4176837	4176837
22ND	83	Тор	4707011	4707011	4707011
21ST	79.5	Тор	5237186	5237186	5237186
20TH	76	Тор	5767361	5767361	5767361
19TH	72.5	Тор	6297535	6297535	6297535
18TH	69	Тор	6827710	6827710	6827710
17TH	65.5	Тор	7357884	7357884	7357884
16TH	62	Тор	7888059	7888059	7888059
15TH	58.5	Тор	8418233	8418233	8418233
14TH	55	Тор	8948408	8948408	8948408
13TH	51.5	Тор	9478583	9478583	9478583
12TH	48	Тор	10008757	10008757	10008757
11TH	44.5	Тор	10538932	10538932	10538932
10TH	41	Тор	11068570	11068570	11068570
9TH	37.5	Тор	11609427	11609427	11609427
8TH	34	Тор	12150285	12150285	12150285
7TH	30.5	Тор	12691142	12691142	12691142
6TH	27	Тор	13232000	13232000	13232000
5TH	23.5	Тор	13771918	13771918	13771918
4TH	20	Тор	14339886	14339886	14339886
3RD	16.5	Тор	14907854	14907854	14907854
2ND	13	Тор	15475821	15475821	15475821
1ST	9.5	Тор	16043789	16043789	16043789
PLINTH	6	Тор	16264437	16264437	16264437
Base	0	Тор	16445051	16445051	16445051

Seismic Analysis Of Multi-Storey Building With Plus Shape Rcshear Walls At The ...

A plot for Storey Moment of Structure in Soft Soil, Medium Soil and Hard Soil in X - Direction with load combination 1.2(DL+LL+EXP) has been shown here

Graph 6:StoreyMoment of Structure in Soft Soil, Medium Soil and Hard Soil in X - Direction

 Table 10:StoreyMoment of Structure in Soft Soil , Medium Soil and Hard Soil in Y - Direction with load combination 1.2(DL+LL+EQYP)

			SOIL TYPE I	SOIL TYPE II	SOIL TYPE III	
Story	Elevation	Location	Y-Dir	Y-Dir	Y-Dir	
	m		kN-m	kN-m	kN-m	
30TH	111	Тор	-504851	-504851	-504851	
29TH	107.5	Тор	-1080107	-1080107	-1080107	
28TH	104	Тор	-1655363	-1655363	-1655363	
27TH	100.5	Тор	-2230620	-2230620	-2230620	
26TH	97	Тор	-2805876	-2805876	-2805876	
25TH	93.5	Тор	-3381133	-3381133	-3381133	
24TH	90	Тор	-3956389	-3956389	-3956389	
23RD	86.5	Тор	-4531645	-4531645	-4531645	

22ND	83	Тор	-5106902	-5106902	-5106902
21ST	79.5	Тор	-5682158	-5682158	-5682158
20TH	76	Тор	-6257414	-6257414	-6257414
19TH	72.5	Тор	-6832671	-6832671	-6832671
18TH	69	Тор	-7407927	-7407927	-7407927
17TH	65.5	Тор	-7983184	-7983184	-7983184
16TH	62	Тор	-8558440	-8558440	-8558440
15TH	58.5	Тор	-9133696	-9133696	-9133696
14TH	55	Тор	-9708953	-9708953	-9708953
13TH	51.5	Тор	-10284209	-10284209	-10284209
12TH	48	Тор	-10859466	-10859466	-10859466
11TH	44.5	Тор	-11434722	-11434722	-11434722
10TH	41	Тор	-12009396	-12009396	-12009396
9TH	37.5	Тор	-12596238	-12596238	-12596238
8TH	34	Тор	-13183081	-13183081	-13183081
7TH	30.5	Тор	-13769923	-13769923	-13769923
6TH	27	Тор	-14356765	-14356765	-14356765
5TH	23.5	Тор	-14942589	-14942589	-14942589
4TH	20	Тор	-15558832	-15558832	-15558832
3RD	16.5	Тор	-16175075	-16175075	-16175075
2ND	13	Top	-16791318	-16791318	-16791318
1ST	9.5	Тор	-17407562	-17407562	-17407562
PLINTH	6	Тор	-17646856	-17646856	-17646856
Base	0	Тор	-17842733	-17842733	-17842733

Seismic Analysis Of Multi-Storey Building With Plus Shape Rcshear Walls At The ...

A plot for Storey Moment of Structure in Soft Soil, Medium Soil and Hard Soil in Y - Direction with load combination 1.2(DL+LL+EYP)has been shown here

Graph 7:StoreyMoment of Structure in Soft Soil, Medium Soil and Hard Soil in Y - Direction

 Table 11:StoreyShear of Structure in Soft Soil , Medium Soil and Hard Soil in X - Direction with load combination1.2 (DL+LL+EQXP)

			SOIL TYPE I	SOIL TYPE II	SOIL TYPE III	
Story	Elevation Location		X-Dir	X-Dir	X-Dir	
	m		kN	kN	kN	
30TH	111	Тор	-870.0895	-1183.3217	-1453.0495	
		Bottom	-870.0895	-1183.3217	-1453.0495	
29TH	107.5 Тор		-1752.5342	-2383.4465	-2926.7321	
		Bottom	-1752.5342	-2383.4465	-2926.7321	

28TH	104	Тор	-2578.4528	-3506.6958 -4306.0161	
		Bottom	-2578.4528	-3506.6958	-4306.0161
27TH	100.5	Тор	-3349.7161	-4555.6139	-5594.0259
		Bottom	-3349.7161	-4555.6139	-5594.0259
26TH	97	Тор	-4068.195	-5532.7452	-6793.8857
		Bottom	-4068.195	-5532.7452	-6793.8857
25TH	93.5	Тор	-4735.7604	-6440.6341	-7908.7198
		Bottom	-4735.7604	-6440.6341	-7908.7198
24TH	90	Тор	-5354.283	-7281.8248	-8941.6526
		Bottom	-5354.283	-7281.8248	-8941.6526
23RD	86.5	Тор	-5925.6337	-8058.8618	-9895.8083
		Bottom	-5925.6337	-8058.8618	-9895.8083
22ND	83	Тор	-6451.6833	-8774.2894	-10774.3112
		Bottom	-6451.6833	-8774.2894	-10774.3112
21ST	79.5	Тор	-6934.3028	-9430.6518	-11580.2857
		Bottom	-6934.3028	-9430.6518	-11580.2857
20TH	76	Тор	-7375.3629	-10030.4935	-12316.856
		Bottom	-7375.3629	-10030.4935	-12316.856
19TH	72.5	Тор	-7776.7344	-10576.3588	-12987.1465
		Bottom	-7776.7344	-10576.3588	-12987.1465
18TH	69	Тор	-8140.2883	-11070.792	-13594.2814
		Bottom	-8140.2883	-11070.792	-13594.2814
17TH	65.5	Тор	-8467.8952	-11516.3375	-14141.3851
		Bottom	-8467.8952	-11516.3375	-14141.3851
16TH	62	Тор	-8761.4262	-11915.5397	-14631.5818
		Bottom	-8761.4262	-11915.5397	-14631.5818
15TH	58.5	Тор	-9022.752	-12270.9427	-15067.9959
		Bottom	-9022.752	-12270.9427	-15067.9959
14TH	55	Тор	-9253.7435	-12585.0911	-15453.7516
		Bottom	-9253.7435	-12585.0911	-15453.7516
13TH	51.5	Тор	-9456.2715	-12860.5292	-15791.9733
		Bottom	-9456.2715	-12860.5292	-15791.9733
12TH	48	Тор	-9632.2068	-13099.8012	-16085.7853
		Bottom	-9632.2068	-13099.8012	-16085.7853
11TH	44.5	Тор	-9783.4203	-13305.4516	-16338.3119
		Bottom	-9783.4203	-13305.4516	-16338.3119
10TH	41	Тор	-9913.2648	-13482.0401	-16555.1522
		Bottom	-9913.2648	-13482.0401	-16555.1522
9TH	37.5	Тор	-10023.2579	-13631.6307	-16738.8406
		Bottom	-10023.2579	-13631.6307	-16738.8406
8TH	34	Тор	-10113.6771	-13754.6008	-16889.8407
		Bottom	-10113.6771	-13754.6008	-16889.8407
7TH	30.5	Тор	-10186.4387	-13853.5566	-17011.3526
		Bottom	-10186.4387	-13853.5566	-17011.3526
6TH	27	Тор	-10243.4591	-13931.1044	-17106.5767

		Bottom	-10243.4591	-13931.1044	-17106.5767
5TH	23.5	Тор	-10287.9104	-13991.5582	-17180.8104
		Bottom	-10287.9104	-13991.5582	-17180.8104
4TH	20	Тор	-10321.0818	-14036.6713	-17236.2066
		Bottom	-10321.0818	-14036.6713	-17236.2066
3RD	16.5	Тор	-10343.6591	-14067.3763	-17273.9107
		Bottom	-10343.6591	-14067.3763	-17273.9107
2ND	13	Тор	-10357.674	-14086.4366	-17297.3156
		Bottom	-10357.674	-14086.4366	-17297.3156
1ST	9.5	Тор	-10365.1583	-14096.6153	-17309.8143
		Bottom	-10365.1583	-14096.6153	-17309.8143
PLINTH	6	Тор	-10366.7741	-14098.8127	-17312.5127
		Bottom	-10366.7741	-14098.8127	-17312.5127
Base	0	Тор	0	0	0
		Bottom	0	0	0

Seismic Analysis Of Multi-Storey Building With Plus Shape Rcshear Walls At The...

A plot for Storey Shear of Structure in Soft Soil , Medium Soil and Hard Soil in X - Direction with load combination 1.2(DL+LL+EXP) has been shown here

Graph 8: Storey Shear of Structure in Soft Soil, Medium Soil and Hard Soil in X - Direction

Column Forces

 Table 12: column axial force, P for structure with the load combination 1.2 (DL+LL+EQXP) &1.2 (DL+LL+EQYP) in soft ,medium &hard soil

TABLE: Column Forces					SOIL TYPE I	SOIL TYPE II	SOIL TYPE III
		Unique					
Story	Column	Name	Load Case/Combo	Station	Р	Р	Р
				m	kN	kN	kN
1ST	C34	67	12DLRLLEQXP	0	-24171.1	-24937.5	-25597.5
1ST	C34	67	12DLRLLEQXP	1.45	-24103.1	-24869.5	-25529.5
1ST	C34	67	12DLRLLEQXP	2.9	-24035.1	-24801.6	-25461.5
1ST	C34	67	12DLRLLEQYP	0	-23630.6	-24202.5	-24695
1ST	C34	67	12DLRLLEQYP	1.45	-23562.7	-24134.6	-24627
1ST	C34	67	12DLRLLEQYP	2.9	-23494.7	-24066.6	-24559

	(DETERTION SOIL, inconditional soil										
					SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	
TABI	E: Colum	n Forces			TYPE I	TYPE II	TYPE III	TYPE I	TYPE II	TYPE III	
		Unique	Load								
Story	Column	Name	Case/Combo	Station	M2	M3	M2	M3	M2	M3	
				m	kN-m	kN-m	kN-m	kN-m	kN-m	kN-m	
1ST	C34	67	12DLRLLEQXP	0	-244.012	979.4715	-312.524	1329.527	-371.521	1630.963	
1ST	C34	67	12DLRLLEQXP	1.45	-146.268	805.6993	-197.671	1112.772	-241.934	1377.196	
1ST	C34	67	12DLRLLEQXP	2.9	-48.5251	631.9271	-82.8175	896.0172	-112.347	1123.428	
1ST	C34	67	12DLRLLEQYP	0	1727.573	-24.7075	2368.832	-36.1568	2921.026	-46.0159	
1ST	C34	67	12DLRLLEQYP	1.45	1393.642	-70.5194	1896.607	-78.8855	2329.716	-86.0897	
1ST	C34	67	12DLRLLEQYP	2.9	1059.71	-116.331	1424.382	-121.614	1738.406	-126.163	

Table 13:column Moment, M for structure with the load combination 1.2 (DL+LL+EQXP) &1.2 (DL+LL+EQXP) in soft medium&hard soil

 Table 14:column Shear , V for structure with the load combination 1.2 (DL+LL+EQXP) &1.2 (DL+LL+EQYP) in soft ,medium &hard soil

						SOIL		SOIL		
					SOIL	SOIL	TYPE	SOIL	TYPE	SOIL
TABL	E: Column	Forces			TYPE I	TYPE II	III	TYPE I	II	TYPE III
		Unique	Load							
Story	Column	Name	Case/Combo	Station	V2	V3	V2	V3	V2	V3
				m	kN	kN	kN	kN	kN	kN
1ST	C34	67	12DLRLLEQXP	0	119.8429	-67.4092	149.486	-79.2092	175.012	-89.3703
1ST	C34	67	12DLRLLEQXP	1.45	119.8429	-67.4092	149.486	-79.2092	175.012	-89.3703
1ST	C34	67	12DLRLLEQXP	2.9	119.8429	-67.4092	149.486	-79.2092	175.012	-89.3703
1ST	C34	67	12DLRLLEQYP	0	31.5944	230.2977	29.4681	325.6722	27.6371	407.8002
1ST	C34	67	12DLRLLEQYP	1.45	31.5944	230.2977	29.4681	325.6722	27.6371	407.8002
1ST	C34	67	12DLRLLEQYP	2.9	31.5944	230.2977	29.4681	325.6722	27.6371	407.8002

 Table 15:column Torsion , T for structure with the load combination 1.2 (DL+LL+EQXP) &1.2 (DL+LL+EQXP) in soft ,medium &hard soil

TAI	BLE: Column F	Forces			SOIL TYPE I	SOIL TYPE II	SOIL TYPE III
Stowy	Calumn	Unique	Lood Coso/Combo	Station	т	т	т
Story	Column	Iname	Load Case/Combo	Station	1	1	1
				m	kN-m	kN-m	kN-m
1ST	C34	67	12DLRLLEQXP	0	-41.6175	-56.5981	-69.4981
1ST	C34	67	12DLRLLEQXP	1.45	-41.6175	-56.5981	-69.4981
1ST	C34	67	12DLRLLEQXP	2.9	-41.6175	-56.5981	-69.4981
1ST	C34	67	12DLRLLEQYP	0	45.3145	61.6294	75.6784
1ST	C34	67	12DLRLLEQYP	1.45	45.3145	61.6294	75.6784
1ST	C34	67	12DLRLLEQYP	2.9	45.3145	61.6294	75.6784

Pier Forces

 Table 16: Pier Axial Force, P for structure with the load combination 1.2 (DL+LL+EQXP) &1.2 (DL+LL+EQYP) in soft ,medium&hard soil

TABLE: Pier Forces				SOIL TYPE I	SOIL TYPE II	SOIL TYPE III
Story	Pier	Load Case/Combo	Location	Р	Р	Р
				kN	kN	kN
1ST	P3	12DLRLLEQXP	Тор	-31716.3887	-31716.3887	-31716.3887
1ST	P3	12DLRLLEQXP	Bottom	-31976.2637	-31976.2637	-31976.2637
1ST	P3	12DLRLLEQYP	Тор	-31716.3887	-31716.3887	-31716.3887
1ST	P3	12DLRLLEQYP	Bottom	-31976.2637	-31976.2637	-31976.2637

Table 17: Pier Moment, M for structure with the load combination 1.2 (DL+LL+EQXP) &1.2 (DL+LL+EQYP) in soft ,medium &hard soil

TABLE: Pier Forces				SOIL TYPE I	SOIL TYPE I	SOIL TYPE II	SOIL TYPE II	SOIL TYPE III	SOIL TYPE III
Story	Pier	Load Case/Combo	Location	M2	M3	M2	M3	M2	M3
				kN-m	kN-m	kN-m	kN-m	kN-m	kN-m
1ST	P3	12DLRLLEQXP	Тор	429.3134	-285.376	587.5838	-285.376	723.8721	-285.376
								-	
1ST	P3	12DLRLLEQXP	Bottom	-796.6308	-244.1397	-1084.8797	-244.1397	1333.0941	-244.1397
1ST	P3	12DLRLLEQYP	Тор	-10.3264	29494.5797	-10.3264	40215.3638	-10.3264	49447.15
1ST	P3	12DLRLLEQYP	Bottom	4.0607	41193.3422	4.0607	56110.8357	4.0607	68956.455

	(DL+LL+EQYP) in soft ,medium&hard soil											
TAB	LE:			SOIL TYPE	SOIL	SOIL	SOIL	SOIL	SOIL			
Pier Fe	orces			Ι	TYPE I	TYPE II	TYPE II	TYPE III	TYPE III			
		Load										
Story	Pier	Case/Combo	Location	V2	V3	V2	V3	V2	V3			
				kN	kN	kN	kN	kN	kN			
1ST	P3	12DLRLLEQXP	Тор	11.7818	-350.2698	11.7818	-477.8467	11.7818	-587.7046			
1ST	P3	12DLRLLEQXP	Bottom	11.7818	-350.2698	11.7818	-477.8467	11.7818	-587.7046			
1ST	P3	12DLRLLEQYP	Тор	3342.5036	4.1106	4541.5634	4.1106	5574.0871	4.1106			
1ST	P3	12DLRLLEQYP	Bottom	3342.5036	4.1106	4541.5634	4.1106	5574.0871	4.1106			

Table 18: Pier Shear Force, V for structure with the load combination 1.2 (DL+LL+EQXP) &1.2 (DL+LL+EQXP) in soft medium&bard soil

 Table 19: Pier Torsion, T for structure with the load combination 1.2 (DL+LL+EQXP) &1.2 (DL+LL+EQYP) in soft ,medium&hard soil

TABLE: Pier Forces				SOIL TYPE I	SOIL TYPE II	SOIL TYPE III
Story	Pier	Pier Load Case/Combo		Т	Т	Т
				kN-m	kN-m	kN-m
1ST	P3	12DLRLLEQXP	Тор	-57.8883	-75.9256	-91.4578
1ST	P3	12DLRLLEQXP	Bottom	-57.8883	-75.9256	-91.4578
1ST	P3	12DLRLLEQYP	Тор	46.5531	66.1147	82.9594
1ST	P3	12DLRLLEQYP	Bottom	46.5531	66.1147	82.9594

 Table 20: Modal Load Participation Ratios

ТА				
Case	Dynamic			
			%	%
Modal	Acceleration	UX	99.82	86.71
Modal	Acceleration	UY	99.79	87.46
Modal	Acceleration	UZ	0	0

According to IS-1893:2002 the number of modes to be used in the analysis should be such that the total sum of modal masses of all modes considered is at least 90 percent of the total seismic mass. Here the minimum modal mass is 86.71 percent.

Case	Mode	Period sec	UX	UY	UZ	RX	RY	RZ			
Modal	1	6.298	0	0.7575	0	0.2499	0	0			
Modal	2	6.248	0	0	0	0	0	0.7702			
Modal	3	5.545	0.7329	0	0	0	0.2768	0			
Modal	4	2.062	0	0	0	0	0	0.1046			
Modal	5	1.952	0	0.1171	0	0.4414	0	0			
Modal	6	1.603	0.1343	0	0	0	0.3985	0			
Modal	7	1.191	0	0	0	0	0	0.0422			
Modal	8	1.027	0	0.046	0	0.0794	0	0			
Modal	9	0.803	0	0	0	0	0	0.0227			
Modal	10	0.782	0.0528	0	0	0	0.0991	0			
Modal	11	0.645	0	0.0255	0	0.0769	0	0			
Modal	12	0.581	0	0	0	0	0	0.0141			

Table 21: Modal Participating Mass Ratios

Here the minimum modal mass for accelerations Ux and Uy is 86.71% and 87.46% respectively.

_	Table 22. Wiodal I chods and I requencies											
TABLE: M	lodal Per	iods and Frequ	uencies SOIL				SOIL TYPE III					
		ГҮРЕ І		SOIL TYPE II	SOIL TYPE II	SOIL TYPE III						
Case	Mode	Period	Frequency	Period	Frequency	Period	Frequency					
		sec	cyc/sec	sec	cyc/sec	sec	cyc/sec					
Modal	1	6.298	0.159	6.298	0.159	6.298	0.159					
Modal	2	6.248	0.16	6.248	0.16	6.248	0.16					
Modal	3	5.545	0.18	5.545	0.18	5.545	0.18					
Modal	4	2.062	0.485	2.062	0.485	2.062	0.485					
Modal	5	1.952	0.512	1.952	0.512	1.952	0.512					
Modal	6	1.603	0.624	1.603	0.624	1.603	0.624					

Table 22: Modal Periods and Frequencies

Seismic Analysis Of Multi-Storey Building With Plus Shape Reshear Walls At The...

Modal	7	1.191	0.84	1.191	0.84	1.191	0.84
Modal	8	1.027	0.974	1.027	0.974	1.027	0.974
Modal	9	0.803	1.245	0.803	1.245	0.803	1.245
Modal	10	0.782	1.279	0.782	1.279	0.782	1.279
Modal	11	0.645	1.55	0.645	1.55	0.645	1.55
Modal	12	0.581	1.72	0.581	1.72	0.581	1.72

Mode 1 is having maximum time period of 6.298sec and 0.159 cyc/sec Frequency which is same for all three type of soils.

Mode shapes of shear wall

Figure 3: Mode shape 1 for shear wall

Figure 4: Mode shape 2 for shear wall

Figure 7: Mode shape 5 for shear wall

Figure 10: Mode shape 8 for shear wall

Seismic Analysis Of Multi-Storey Building With Plus Shape Rcshear Walls At The...

Figure 11: Mode shape 9 for shear wall

Figure 12: Mode shape 10 for shear wall

Figure 13: Mode shape 11 for shear wall

Figure 14: Mode shape 12 for shear wall

III. DISCUSSION ON RESULTS

The result obtained from the analysis models will be discussed and compared as follows:

It is observed that

- ✤ The time period is 6.298Sec for structure and it is same for different type of soil.
- ✤ The Frequency is 0.159cyc/sec and it is same for different type of soil.

It is observed that

The percentage of displacement in X& Y direction is more by 35.94 % of the model in medium soil and 66.90 % of model in hard soil compared with model in soft soil.

It is observed that

- The maximum storey drift in X-direction occurred at storey 13th for the model in hard ,medium and soft soil.
- The percentage of storey drift in X- direction is decreased by placing shear wall as shown below :-
- ✤ 35.90 % of model in medium soil compared with model in soft soil.
- ♦ 66.79% of model in hard soil compared with model in soft soil.

It is observed that

The maximum column axial force is various with type of soil and placing of the shear wall.column axial force in soft soil>medium soil>hard soil.

It is observed that

- * The maximum column moment in Y-direction is influenced by the type of soil and placing of shear wall.
- ✤ The maximum column moment M2 in X-direction for soft Soil >Medium soil > Hard soil.
- ✤ The maximum column moment M3 in X-direction for soft Soil <Medium soil < Hard soil.</p>
- The maximum column moment M2 in Y-direction for soft Soil <Medium soil < Hard soil.</p>
- The maximum column moment M3in Y-direction for soft Soil >Medium soil > Hard soil.

It is observed that

- ♦ The maximum column Shear V2 in X-direction for soft Soil <Medium soil < Hard soil.
- ✤ The maximum column Shear V3 in X-direction for soft Soil >Medium soil > Hard soil.
- ♦ The maximum column Shear V2 in Y-direction for soft Soil>Medium soil > Hard soil.
- The maximum column Shear V3 in Y-direction for soft Soil <Medium soil < Hard soil.</p>

It is observed that

- The maximum column Torsion, T in X-direction for soft Soil >Medium soil > Hard soil.
- ✤ The maximum column Torsion, T in Y-direction for soft Soil <Medium soil < Hard soil.

It is observed that

Shear Wall forces (Pier Forces)

- For the Pier axial forces in X direction There is not considerable difference for soft Soil ,Medium soil & Hard soil.
- $\label{eq:constraint} \bullet \quad \text{Pier Moment M2 in X direction for soft soil < medium soil < hard soil .}$
- Pier Moment M3 in X direction for soft soil =medium soil = hard soil.
- Pier Moment M2 in Y direction for soft soil =Medium soil = hard soil .
- $\label{eq:moment_sol} \bullet \quad \mbox{Pier Moment M3 in Y direction for soft soil < Medium soil < hard soil .}$
- Pier Shear Forces V2 in X direction for soft soil = Medium soil = hard soil.
- Pier Shear Forces V3 in X direction for soft soil >Medium soil > hard soil.
- Pier Torsion in X direction for soft soil >Medium soil > hard soil.
- Pier Torsion in Y direction for soft soil <Medium soil < hard soil.

It is observed that

- There is considerable difference in storey shear force in x-direction with a type of soils.
- The value of the storey shear force in x-direction decreases with increase in storey level.
- The value of the storey shear force in x-direction for the structure in soft soil is more compared with the structure in hard and medium soil.

It is observed that

- The value of the lateral loads in x-direction decreases with increase in storey level.
- The value of the lateral loads in x-direction for the structure in soft soil is less compared with the structure in medium soil and hard soil.
- lateral loads in X-direction for the structure in soft soil <Medium soil < hard soil.</p>

It is observed that

- There is not difference in a storey moment in x-direction with a different type of soils.
- There is not difference in a storey moment in y-direction with a different type of soils.

It is observed that

- The value of the Stiffness of Structure in Soft Soil, Medium Soil and Hard Soil in X direction for load cases EQXP is same.
- The value of the Stiffness of Structure in Soft Soil, Medium Soil and Hard Soil in Y direction for load cases EQYP is same.

V. CONCLUSIONS

In this paper, reinforced concrete shear wall buildings were analyzed with the procedures laid out in IS codes. Seismic performance of building model is evaluated.

From the above results and discussions, following conclusions can be drawn:

- Shear Walls must be coinciding with the centroid of the building for better performance. It follows that a centre core Shear wall should be provided.
- The shear wall and it is position has a significant influenced on the time period. The time period is not influenced by the type of soil..
- shear is effected marginally by placing of the shear wall, grouping of shear wall and type of soil. The shear is increased by adding shear wall due to increase the seismic weight of the building.
- Provision of the shear wall, generally results in reducing the displacement because the shear wall increases the stiffness of the building. The displacement is influenced by type and location of the shear wall and also by changing soil condition. The better performance for model with soft soil because it has low displacement.
- For both X and Y directions, the behaviour of the displacement graph is similar for model in Soft Soil, Medium Soil and Hard Soil. The order of maximum storey displacement in both the directions for the models is same.
- The shear force resisted by the column frame is decreasing by placing the shear wall and the shear force resisted by the shear wall is increasing. This can be concluded indirectly by observing the maximum column shear force and moment in both directions.

- ✤ As per code, the actual drift is less than permissible drift. The parallel arrangement of shear wall in the center core and outer periphery is giving very good result in controlling drift in both the direction. The better performance for model with soft soil because it has low storey drift.
- The moment resisting frame with shear walls are very good in lateral force such as earthquake and wind force. The shear walls provide lateral load distribution by transferring the wind and earthquake loads to the foundation. And also impact on the lateral stiffness of the system and also carries gravity loads.
- It is evident that shear walls which are provided from the foundation to the rooftop, are one of the excellent mean for providing earthquake resistant to multistory reinforced building with different type of soil.
- For the columns located away from the shear wall the Bending Moment is high and shear force is less when compared with the columns connected to the shear wall.
- Based on the analysis and discussion ,shear wall are very much suitable for resisting earthquake induced lateral forces in multistoried structural systems when compared to multistoried structural systems whit out shear walls. They can be made to behave in a ductile manner by adopting proper detailing techniques.
- The vertical reinforcement that is uniformly distributed in the shear wall shall not be less than the horizontal reinforcement. This provision is particularly for squat walls (i.e. Height-to-width ratio is about 1.0). However, for walls whit height-to-width ratio less than 1.0, a major part of the shear force is resisted by the vertical reinforcement. Hence, adequate vertical reinforcement should be provided for such walls.
- According to IS-1893:2002 the number of modes to be used in the analysis should be such that the total sum of modal masses of all modes considered is at least 90 percent of the total seismic mass. Here the minimum modal mass is 86.71 percent.
- It is observed that the column axial force is various with type of soil and placing of the shear wall.
- It is observed that the column shear force in x&ydirection is influenced by the type of soil and placing of the shear wall.
- It is observed that the column torsion is influenced by the type of soil and placing shear wall.
- It is observed that the column moment is influenced by the type of soil and placing of shear wall.
- It is observed that the Pier shear force is various with type of soil and placing of the shear wall.
- It is observed that the pier Torsion is various with type of soil and placing of the shear wall.
- It is observed that the There is not difference in a storey moment with a different type of soils.
- It is observed that the pier Moment is various with type of soil and placing of the shear wall
- It is observed that the There is not considerable difference in Pier Axial Force is various with type of soil and placing of the shear wall.
- It is observed that the value of stiffness in x& y-direction is same for the model with a different type of soil and placing shear wall.

REFERENCES

- [1]. Duggal, S.K., "Earthquake Resistant Design of Structures" Oxford University Press, New Delhi 2010
- [2]. Chopra, A.K., "Dynamics of Structures: Theory and Application to Earthquake Engineering", Pearson Education, 4th edition, 2012.
- [3]. Bureau of Indian Standars, IS 456 : 2000, "Plain and Reinforced Concrete-Code of practice", New Delhi, India.
- [4]. Bureau of Indian Standards: IS 13920 : 1993, "Ductile detailing of reinforced concrete structures subjected to seismic forces— Code of Practice", New Delhi, India.
- [5]. Bureau of Indian Standards: IS 875(part 1) : 1987, "Dead loads on buildings and Structures", New Delhi, India.
- [6]. Bureau of Indian Standards: IS 875(part 2): 1987, "Live loads on buildings and Structures", New Delhi, India.
 [7]. Bureau of Indian Standards: IS 1893 (part 1): 2002, "Criteria for earthquake resistant design of structures: Part 1 General Indian Standards: IS 1893 (part 1): 2002, "Criteria for earthquake resistant design of structures: Part 1 General Indian Standards: IS 1893 (part 1): 2002, "Criteria for earthquake resistant design of structures: Part 1 General Indian Standards: IS 1893 (part 1): 2002, "Criteria for earthquake resistant design of structures: Part 1 General Indian Standards: IS 1893 (part 1): 2002, "Criteria for earthquake resistant design of structures: Part 1 General Indian Standards: IS 1893 (part 1): 2002, "Criteria for earthquake resistant design of structures: Part 1 General Indian Standards: IS 1893 (part 1): 2002, "Criteria for earthquake resistant design of structures: Part 1 General Indian Standards: IS 1893 (part 1): 2002, "Criteria for earthquake resistant design of structures: Part 1 General Indian Standards: IS 1893 (part 1): 2002, "Criteria for earthquake resistant design of structures: Part 1 General Indian Standards: IS 1893 (part 1): 2002, "Criteria for earthquake resistant design of structures: Part 1 General Indian Standards: IS 1893 (part 1): 2002, "Criteria for earthquake resistant design of structures: Part 1 General Indian Standards: IS 1893 (part 1): 2002, "Criteria for earthquake resistant design of structures: Part 1 General Indian Standards: IS 1893 (part 1): 2002, "Criteria for earthquake resistant design of structures: Part 1 General Indian Standards: IS 1893 (part 1): 2002, "Criteria for earthquake resistant design of structures: Part 1 General Indian Standards: IS 1893 (part 1): 2002, "Criteria for earthquake resistant design of structures: Part 1 General Indian Standards: INDIAN STANDARD, INDIAN STANDARD
- provisions and buildings", New Delhi, India.[8]. Berkeley "ETABS Integrated Building Design Software", Computers and Structure, Inc., California, USA, February 2003
- [9]. Gary R.scarer and Sigmund A.Freeman " Design drifts requirement for long period structures ", 1 3 ' World conference on earth quake engineering Vancouver, B.C, Canada , Aug 2004 paper no-3292.
- [10]. J.L.Humar and S.Yavari "Design of concrete shear wall buildings for earthquake induced torsion". 4'1" structural conference of the Canadian society for civil engineering June-2002.
- [11]. Mo and Jost, "the seismic response of multistory reinforced concrete framed shear walls using a nonlinear model", Volume 15, Structure Engineering, Issue 3, 1993, Pages 155–166.
- [12]. Paulay, T., and Priestley, M.J.N., 'Seismic design of reinforced concrete and masonry buildings', 1992.
- [13]. Anand, N. ,Mightraj, C. and Prince Arulraj, G. "Seismic behaviour of RCC shear wall under different soil conditions" Indian geotechnical conference, Dec 2010, pp 119-120.
- [14]. Anshuman, S., DipenduBhunia, BhavinRamjiyani, "Solution of shear wall location in multistory building", International journal of civil and structural engineering, Vol. 4, Issue 5, pp. 22-32 ,2011.
- [15]. Chandiwala, A., "Earthquake Analysis of Building Configuration withDifferent Position of Shear Wall", International Journal of Emerging Technology and Advanced Engineering ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 2, Issue 12, December 2012
- [16]. Chandurkar, P.P., Dr. Pajgade, P.S., "Seismic analysis of RCC building with and without shear wall", International Journal of Modern Engineering Research. Vol. 3, Issue 3, pp. 1805-1810, 2013.
 [17]. Rahangdale, H., Satone, S.R., "Design and analysis of multi-storied building with effect of shear wall", International journal of
- [17]. Rahangdale, H., Satone, S.R., "Design and analysis of multi-storied building with effect of shear wall", International journal of engineering research and application", Vol. 3, Issue 3, pp. 223-232, 2013.