International Journal Of Engineering Research And Development

e-ISSN: 2278-067X, p-ISSN: 2278-800X, www.ijerd.com

Volume 13, Issue 12 (December 2017), PP.63-71

Five-Dimensional Finsler Spaces with T-Tensor of Some Special forms

Anamika Rai*, S. K. Tiwari

Department of Mathematics K. S. Saket Post Graduate College Ayodhya, Faizabad-224123 (INDIA)

ABSTRACT: The T-tensor played an important role in the Finsler geometry. In this paper, we discuss a five-dimensional Finsler space whose T-tensor is of special forms.

Keywords: Finsler space, Ttensor.

2000 Math Subject Classification: 53B40.

Date of Submission: 27 -11-2017 Date of acceptance: 16-12-2017

I. INTRODUCTION

Let M^5 be a five-dimensional smooth manifold and $F^5 = (M^5, L)$ be a five-dimensional Finsler space equipped with a metric function L(x, y) on M^5 . The normalized supporting element, the metric tensor, the angular metric tensor and Cartan tensor are defined by

$$l_i = \dot{\partial}_i L$$
, $g_{ij} = \frac{1}{2} \dot{\partial}_i \dot{\partial}_j L^2$, $h_{ij} = L \dot{\partial}_i \dot{\partial}_j L$ and $C_{ijk} = \frac{1}{2} \dot{\partial}_k g_{ij}$

respectively.

The torsion vector C^i is defined by $C^i = C^i_{ik} g^{jk}$.

Throughout the paper, we use the symbols $\dot{\partial}_i$ and ∂_i for $\partial/\partial y^i$ and $\partial/\partial x^i$ respectively. The Cartan connection in the Finsler space is given as $C\Gamma = (F^i_{jk}, G^i_j, C^i_{jk})$. The h- and v-covariant derivatives of a covariant vector $X_i(x,y)$ with respect to the Cartan connection are given by

$$X_{i|j} = \partial_j X_i - (\dot{\partial}_h X_i) G_j^h - F_{ij}^r X_r, \tag{1.1}$$

and

$$X_i|_j = \hat{\partial}_j X_i - C_{ij}^r X_r. \tag{1.2}$$

In 1972, H. Kawaguchi [1] and M. Matsumoto [2] independently found an important tensor

$$T_{hiik} = LC_{hii}|_{k} + C_{hii}l_{k} + C_{hik}l_{i} + C_{hki}l_{i} + C_{kii}l_{h}.$$
(1.3)

This is called the T-tensor. It is completely symmetric in its indices. The vanishing of T-tensor is called T-condition.

U. P. Singh et al. [3, 4] studied three-dimensional Finsler spaces with T-tensor of the following forms:

(A)
$$T_{hijk} = \rho(h_{hi}h_{jk} + h_{hj}h_{ik} + h_{hk}h_{ij}),$$

(B)
$$T_{hiik} = h_{hi}P_{ik} + h_{hi}P_{ik} + h_{hk}P_{ij} + h_{ii}P_{hk} + h_{ik}P_{hi} + h_{ik}P_{hi}$$

(C)
$$T_{hijk} = \rho C_h C_i C_j C_k + a_h C_i C_j C_k + a_i C_h C_j C_k + a_j C_h C_i C_k + a_k C_h C_i C_j$$
,

where P_{ij} are the components of a tensor field, a_h are the components of a covariant vector field and ρ is a scalar. Present authors studied the theory of five-dimensional Finsler space. In this paper [9-11], we discuss five-dimensional Finsler spaces with T-tensor of such forms.

II. FIVE-DIMENSIONAL FINSLER SPACE

The Miron frame for a five-dimensional Finsler space is constructed by the unit vectors $(e_{1}^{i}, e_{2}^{i}, e_{3}^{i}, e_{4}^{i}, e_{5}^{i})$. The first vector e_{1}^{i} is the normalized supporting element l^{i} and the second e_{2}^{i} , is the

normalized torsion vector $m^i=C^i/C$, the third $e^i_{3)}=n^i$, the fourth $e^i_{4)}=p^i$ and the fifth $e^i_{5)}=q^i$ are constructed by $g_{ij}e^i_{\alpha j}e^j_{\beta j}=\delta_{\alpha\beta}$. We suppose that the length C of the vector C^i does not vanish, i.e., the space is non-Riemannian. With respect to this frame, the scalar components of an arbitrary tensor T^i_j are defined by

$$T_{\alpha\beta} = T_i^i e_{\alpha)i} e_{\beta)}^j, \tag{2.1}$$

from which, we get

$$T_i^i = T_{\alpha\beta} e_{\alpha i}^i e_{\beta ij}, \tag{2.2}$$

where summation convention is also applied to Greek indices. The scalar components of the metric tensor g_{ij} are $\delta_{\alpha\beta}$.

Let $H_{\alpha)\beta\gamma}$ and $V_{\alpha)\beta\gamma}|L$ be scalar components of the h- and v-covariant derivatives $e^i_{\alpha)|j}$ and $e^i_{\alpha)|j}$ respectively of the vectors $e^i_{\alpha)}$, then

$$e_{\alpha|i}^{i} = H_{\alpha|\beta_{i}} e_{\beta|i}^{i} e_{\gamma|i}, \tag{2.3}$$

and

$$Le_{\alpha}^{i}|_{i} = V_{\alpha\beta\gamma}e_{\beta}^{i}e_{\gamma\beta}^{i}. \tag{2.4}$$

 $H_{\alpha)\beta\gamma}$ and $V_{\alpha)\beta\gamma}$ are called h- and v-connection scalars respectively and are positively homogeneous of degree zero in y. Orthogonality of the Miron frame yields [5] $H_{\alpha)\beta\gamma}=-H_{\beta)\alpha\gamma}$ and $V_{\alpha)\beta\gamma}=-V_{\beta)\alpha\gamma}$. Also, we have $H_{1)\beta\gamma}=0$ and $V_{1)\beta\gamma}=\delta_{\beta\gamma}-\delta_{|\beta}\delta_{|\gamma}$.

Now, we define Finsler vector fields:

$$h_i = H_{2)3\beta} e_{\beta)i},$$
 $J_i = H_{2)4\beta} e_{\beta)i},$ $k_i = H_{2)5\beta} e_{\beta)i},$
 $h_i' = H_{3)4\beta} e_{\beta)i},$ $J_i' = H_{3)5\beta} e_{\beta)i},$ $k_i' = H_{4)5\beta} e_{\beta)i},$

and

$$\begin{split} u_i &= V_{2)3\beta} \, e_{\beta)i}, & v_i &= V_{2)4\beta} e_{\beta)i}, & w_i &= V_{2)5\beta} e_{\beta)i}, \\ u_i' &= V_{3)4\beta} \, e_{\beta)i}, & v_i' &= V_{3)5\beta} e_{\beta)i}, & w_i' &= V_{4)5\beta} e_{\beta)i}, \end{split}$$

Definition. The Finsler vector fields $(h_i, J_i, k_i, h_i', J_i', k_i')$ are called h-connection vectors and the vector fields $(u_i, v_i, w_i, u_i', v_i', w_i')$ are called v-connection vectors.

The scalars $H_{2)3\beta}$, $H_{2)4\beta}$, $H_{2)5\beta}$, $H_{3)4\beta}$, $H_{3)5\beta}$, $H_{4)5\beta}$ and $V_{2)3\beta}$, $V_{2)4\beta}$, $V_{2)5\beta}$, $V_{3)4\beta}$, $V_{3)5\beta}$, $V_{4)5\beta}$ are considered as the scalar components h_{β} , J_{β} , k_{β} , h_{β}' , J_{β}' , k_{β}' and u_{β} , v_{β} , w_{β} , u_{β}' , v_{β}' , w_{β}' of the h- and v-connection vectors respectively with respect to the orthonormal frame.

From (2.4), we get

(a)
$$Le_{1}^{i}|_{j} = Ll^{i}|_{j} = m^{i}m_{j} + n^{i}n_{j} + p^{i}p_{j} + q^{i}q_{j} = h_{j}^{i}$$
,

(b)
$$Le_{2j}^{i}|_{j} = Lm^{i}|_{j} = -l^{i}m_{j} + n^{i}u_{j} + p^{i}v_{j} + q^{i}w_{j}$$
,

(c)
$$Le_{3j}^{i}|_{j} = Ln^{i}|_{j} = -l^{i}n_{j} - m^{i}u_{j} + p^{i}u_{j}^{'} + q^{i}v_{j}^{'},$$
 (2.5)

(d)
$$Le_{4}^{i}|_{i} = Lp^{i}|_{i} = -l^{i}p_{i} - m^{i}v_{i} - n^{i}u_{i}^{'} + q^{i}w_{i}^{'},$$

(e)
$$Le_{5}^{i}|_{i} = Lq^{i}|_{i} = -l^{i}q_{i} - m^{i}w_{i} - n^{i}v_{i}^{'} - p^{i}w_{i}^{'}$$
.

Since m_i , n_i , p_i , q_i are homogeneous function of degree zero in y^i , we have

$$Lm^{i}|_{j}l^{j} = Ln^{i}|_{j}l^{j} = Lp^{i}|_{j}l^{j} = Lq^{i}|_{j}l^{j} = 0.$$

These imply $u_1 = v_1 = w_1 = u_1' = v_1' = w_1' = 0$. Consequently, we have

Proposition 2.1. The first scalar components u_1 , v_1 , w_1 , u_1' , v_1' , w_1' of v-connection vectors u_i , v_i , w_i , u_i' , v_i' , w_i' vanish identically.

Let $C_{\alpha\beta\gamma}$ be the scalar components of LC_{iik} with respect to the Miron frame, i.e.,

$$LC_{ijk} = C_{\alpha\beta\gamma}e_{\alpha\gamma i}e_{\beta\gamma i}e_{\gamma\gamma k}.$$
 (2.6)

The main scalars of a five-dimensional Finsler space are given by [9-10]

$$\begin{split} &C_{222} = H, & C_{233} = I, & C_{244} = K, & C_{255} = M, & C_{333} = J, \\ &C_{344} = J', & C_{444} = H', & C_{334} = I', & C_{234} = K', & C_{355} = J'', \\ &C_{455} = M', & C_{555} = H'', & C_{335} = I'', & C_{445} = K'', & C_{235} = N, \\ &C_{245} = N', & C_{345} = M'', & & & \end{split}$$

we have

$$C_{322} = -(J + J' + J''), \quad C_{224} = -(H' + I' + M'), \quad C_{225} = -(H'' + I'' + M'')$$

and

$$H+I+K+M=LC (2.7)$$

The scalar components $T_{\alpha\beta;\gamma}$ of $LT_i^i|_k$ are written in the form [5]

$$T_{\alpha\beta\gamma} = L(\dot{\partial}_k T_{\alpha\beta}) e_{\gamma}^k + T_{\mu\beta} V_{\mu\alpha\gamma} + T_{\alpha\mu} V_{\mu\beta\gamma}. \tag{2.8}$$

The explicit form of $\,C_{\alpha\beta\nu:\delta}\,$ is obtained as follows:

$$\begin{split} &C_{222;\delta} = H_{,\delta} + 3(J+J'+J''u_{\delta} + 3(H'+I'+M')v_{\delta} + 3(H''+I''+K'')w_{\delta}, \\ &C_{223;\delta} = -(J+J'+J'')_{,\delta} + (H-2I)u_{\delta} - 2K'v_{\delta} - 2Nw_{\delta} + (H'+I'+M')u_{\delta}' \\ &+ (H''+I''+M'')v_{\delta}', \\ &C_{224;\delta} = -(H'+I'+M')v_{\delta}', \\ &C_{224;\delta} = -(H'+I''+K'')w_{\delta}', \\ &C_{225;\delta} = -(H''+I''+K'')w_{\delta}', \\ &C_{225;\delta} = -(H''+I''+K'')v_{\delta}', \\ &C_{233;\delta} = I_{;\delta} - (3J+2J'+2J'')u_{\delta} - I'v_{\delta} - I''w_{\delta} - 2Nv_{\delta}' - 2K'u_{\delta}', \\ &C_{234;\delta} = K_{,\delta}' - (2I'+H'+M')u_{\delta} - (2J'+J+J'')v_{\delta} - M''w_{\delta} - (K-I)u_{\delta}' \\ &- N'v_{\delta}' - Nw_{\delta}', \\ &C_{235;\delta} = N_{,\delta} - (2I''+H''+K'')u_{\delta} - M''v_{\delta} - (J+J'+2J'')w_{\delta} \\ &- N'u_{\delta}' - (M-I)v_{\delta}' + K'w_{\delta}', \\ &C_{244;\delta} = K_{,\delta} - J'u_{\delta} - (3H'+2I'+2M')v_{\delta} + 2Ku_{\delta}' - K''w_{\delta} - 2N'w_{\delta}', \\ &C_{245;\delta} = N_{,\delta}' - M''u_{\delta} - (H''+I''+2K'')v_{\delta} + Nu_{\delta}' - (H'+I'+2M')w_{\delta} \\ &+ K'v_{\delta}' + (K-M)w_{\delta}', \\ &C_{235;\delta} = I_{,\delta}' + 2K'u_{\delta} - (3H''+2I''+2K'')w_{\delta} + 2Nv_{\delta}' + 2N'w_{\delta}', \\ &C_{235;\delta} = I_{,\delta}' - J''u_{\delta} - M'v_{\delta} - (3H''+2I''+2K'')w_{\delta} + Nu_{\delta}' - (H'+I'+2M')w_{\delta} \\ &+ K'v_{\delta}' + (K-M)w_{\delta}', \\ &C_{235;\delta} = I_{,\delta}' + 2K'u_{\delta} + Iv_{\delta} + (J-2J')u_{\delta}' - 2M''v_{\delta}' - 1''w_{\delta}', \\ &C_{333;\delta} = I_{,\delta}'' + 2Nu_{\delta} - 2M''u_{\delta}' + (J-2J')u_{\delta}' - 2M''v_{\delta}' - 1''w_{\delta}', \\ &C_{344;\delta} = I_{,\delta}'' + 2Nu_{\delta} - 2M''u_{\delta}' + (J-2J')u_{\delta}' - K''v_{\delta}' - 2M''w_{\delta}', \\ &C_{344;\delta} = I_{,\delta}'' + 2Nu_{\delta} - 2M''u_{\delta}' + (J-2J')u_{\delta}' - K''v_{\delta}' - 2M''w_{\delta}', \\ &C_{344;\delta} = I_{,\delta}'' + Nu_{\delta} + 2K'v_{\delta} - (H-2I')u_{\delta}' - K''v_{\delta}' - 2M''w_{\delta}', \\ &C_{345;\delta} = M_{,\delta}'' + N'u_{\delta} + Nv_{\delta} + (I''-K'')u_{\delta}' + K'w_{\delta} + (I'-M')v_{\delta}', \\ &C_{345;\delta} = M_{,\delta}'' + N'u_{\delta} + Nv_{\delta} + (I''-K'')u_{\delta}' + K'w_{\delta} + (I'-M')v_{\delta}', \\ &C_{345;\delta} = M_{,\delta}'' + N'u_{\delta} + Nv_{\delta} + (I''-K'')u_{\delta}' + K'w_{\delta} + (I'-M')v_{\delta}', \\ &C_{345;\delta} = M_{,\delta}'' + N'u_{\delta} + Nv_{\delta} + (I''-K'')u_{\delta}' + K'w_{\delta} + (I'-M')v_{\delta}', \\ &C_{345;\delta} = M_{,\delta}'' + N'u_{\delta} + Nv_{\delta} + (I''-K'')u_{\delta}' + K'w_{\delta} + (I'-M')v_{\delta}', \\ &C_{345;\delta} = M_{,\delta}'' + Nv_{\delta} + (I''-K'')u_{\delta}' + K'w_{\delta} + (I''-M'')v_{\delta}' + (I''-M'')v_{\delta}' \\ &+ (I'$$

$$\begin{split} C_{355;\delta} &= J_{;\delta}{''} + Mu_{\delta} - M'u_{\delta}{'} + 2Nw_{\delta} - (H'' - 2I'')v_{\delta}{'} + 2M''w_{\delta}{'}, \\ C_{444;\delta} &= H_{;\delta}{'} + 3(Kv_{\delta} + J'u_{\delta}{'} - K''w_{\delta}{'}), \\ C_{445;\delta} &= K_{;\delta}{''} + 2N'v_{\delta} + 2M''u_{\delta}{'} + Kw_{\delta} + J'v_{\delta}{'} + (H' - 2M')w_{\delta}{'}, \\ C_{455;\delta} &= M_{;\delta}{'} + Mv_{\delta} + J''u_{\delta}{'} + 2N'w_{\delta} + 2M'v_{\delta}{'} - (H'' - 2K'')w_{\delta}{'}, \\ C_{555;\delta} &= H_{;\delta}{''} + 3(Mw_{\delta} + J''v_{\delta}{'} + M'w_{\delta}{'}). \\ C_{16v;\delta} &= -C_{6v\delta}, \end{split}$$

where $H_{\cdot\delta} = L(\hat{\partial}_k H) e_{\delta}^k$. From (2.7) and (2.9), we get

$$\begin{split} C_{222;\delta} + C_{233;\delta} + C_{244;\delta} + C_{255;\delta} &= H_{,\delta} + I_{,\delta} + K_{,\delta} + M_{,\delta} \\ &= (H + I + K + M)_{;\delta} = (LC)_{;\delta} \\ C_{322;\delta} + C_{333;\delta} + C_{344;\delta} + C_{355;\delta} &= LCu_{\delta}, \\ C_{224;\delta} + C_{334;\delta} + C_{444;\delta} + C_{455;\delta} &= LCv_{\delta}, \\ C_{225;\delta} + C_{335;\delta} + C_{445;\delta} + C_{555;\delta} &= LCw_{\delta}. \end{split}$$

$$(2.10)$$

From (2.6), it follows that

$$L^{2}C_{ijk}|_{h} + LC_{ijk}l_{h} = C_{\alpha\beta\gamma;\delta}e_{\alpha)i}e_{\beta)j}e_{\gamma)k}e_{\delta)h},$$

which implies

$$L^{2}C_{ijk}\mid_{h} = (C_{\alpha\beta\gamma,\delta} - C_{\alpha\beta\gamma}\delta_{1\delta})e_{\alpha i}e_{\beta j}e_{\gamma k}e_{\delta h}. \tag{2.11}$$

From (1.3) and (2.11), we get

$$LT_{hijk} = (C_{\alpha\beta\gamma;\delta} + C_{\beta\gamma\delta}\delta_{1\alpha} + C_{\alpha\gamma\delta}\delta_{1\beta} + C_{\alpha\beta\delta}\delta_{1\gamma})e_{\alpha)h}e_{\beta)i}e_{\gamma)j}e_{\delta)k}.$$
 (2.12)

Since the tensor $C_{hii}|_{k}$ is completely symmetric in its indices, from (2.11), we get

$$C_{\alpha\beta\gamma;\delta} - C_{\alpha\beta\delta;\gamma} = C_{\alpha\beta\gamma}\delta_{1\delta} - C_{\alpha\beta\delta}\delta_{1\gamma}. \tag{2.13}$$

In view of (2.13), equation (2.10) gives

$$LCu_2 = C_{322;2} + C_{333;2} + C_{344;2} + C_{355;2} = C_{222;3} + C_{233;3} + C_{244;3} + C_{255;3} = (LC)_{;3}, \\ LCv_2 = C_{224;2} + C_{334;2} + C_{444;2} + C_{455;2} = C_{222;4} + C_{233;4} + C_{244;4} + C_{255;4} = (LC)_{;4}, \\ LCu_4 = C_{322;4} + C_{333;4} + C_{344;4} + C_{355;4} = C_{224;3} + C_{334;3} + C_{444;3} + C_{455;3} = (LC)v_3, \\ LCu_5 = C_{322;5} + C_{333;5} + C_{344;5} + C_{355;5} = C_{225;3} + C_{335;3} + C_{445;3} + C_{555;3} = (LC)w_3, \\ LCv_5 = C_{224;5} + C_{334;5} + C_{444;5} + C_{455;5} = C_{225;4} + C_{335;4} + C_{445;4} + C_{555;4} = (LC)w_4, \\ LCw_2 = C_{225;2} + C_{335;2} + C_{445;2} + C_{555;2} = C_{222;5} + C_{233;5} + C_{244;5} + C_{255;5} = (LC)_{;5}. \\ \end{aligned}$$

Since $L_{,3} = L(\dot{\partial}_i L) e_{3)}^i = L l_i n^i = 0$, $L_{,4} = L(\dot{\partial}_i L) e_{4)}^i = L l_i p^i = 0$ and $L_{,5} = L(\dot{\partial}_i L) e_{5)}^i = L l_i q^i = 0$, we have

Proposition 2.2. The scalar components u_2 , v_2 and w_2 of the v-connection vectors u_i , v_i and w_i of a five-dimensional Finsler space are given by

$$u_2 = C^{-1}C_{,3}, v_2 = C^{-1}C_{,4}, w_2 = C^{-1}C_{,5},$$

and the scalar components u_4 , u_5 , v_3 , v_5 , w_3 and w_4 are related by

$$u_4 = v_3, \qquad u_5 = w_3, \qquad v_5 = w_4.$$

III. T-TENSOR OF FORM (A)

A Finsler space is C-reducible if and only if the T-tensor is of the form (A) for $\rho \neq 0^{6-7}$. Let F^5 be a five-dimensional Finsler space with T-tensor of the form (A). The scalar components of the angular metric tensor h_{ij} are given by

$$h_{ij} = (\delta_{\alpha\beta} - \delta_{1\alpha}\delta_{1\beta})e_{\alpha)i}e_{\beta)j},$$

therefore in view of (2.12) and (A), we have

$$\begin{split} (C_{\alpha\beta\gamma;\delta} + C_{\beta\gamma\delta}\delta_{1\alpha} + C_{\alpha\gamma\delta}\delta_{1\beta} + C_{\alpha\beta\delta}\delta_{1\gamma}) &= \rho L\{(\delta_{\alpha\beta} - \delta_{1\alpha}\delta_{1\beta})(\delta_{\gamma\delta} - \delta_{1\gamma}\delta_{1\delta}) + (\delta_{\alpha\gamma} - \delta_{1\alpha}\delta_{1\gamma})(\delta_{\beta\delta} - \delta_{1\beta}\delta_{1\delta}) + (\delta_{\alpha\delta} - \delta_{1\alpha}\delta_{1\delta})(\delta_{\beta\gamma} - \delta_{1\beta}\delta_{1\gamma})\}, \end{split}$$

which gives

$$C_{222;\delta} = 3\rho L \delta_{2\delta}, \quad C_{233;\delta} = \rho L \delta_{2\delta}, \quad C_{244;\delta} = \rho L \delta_{2\delta}, \quad C_{255;\delta} = \rho L \delta_{2\delta},$$

$$C_{322;\delta} = \rho L \delta_{3\delta}, \quad C_{333;\delta} = 3\rho L \delta_{3\delta}, \quad C_{344;\delta} = \rho L \delta_{3\delta}, \quad C_{355;\delta} = \rho L \delta_{3\delta},$$

$$C_{224;\delta} = \rho L \delta_{4\delta}, \quad C_{225;\delta} = \rho L \delta_{5\delta}, \quad C_{444;\delta} = 3\rho L \delta_{4\delta}, \quad C_{334;\delta} = \rho L \delta_{4\delta},$$

$$C_{335;\delta} = \rho L \delta_{5\delta}, \quad C_{455;\delta} = \rho L \delta_{4\delta}, \quad C_{555;\delta} = 3\rho L \delta_{5\delta}, \quad C_{445;\delta} = \rho L \delta_{5\delta}.$$
(3.1)

Putting (3.1) into (2.10), we get

$$(LC)_{:\delta} = 6\rho L\delta_{2\delta}, \quad LCu_{\delta} = 6\rho L\delta_{3\delta}, \quad LCv_{\delta} = 6\rho L\delta_{4\delta}, \quad LCw_{\delta} = 6\rho L\delta_{5\delta}.$$

Again from the first equation of (3.1), we get

$$C_{222;\delta} = H_{:\delta} + 3(J + J' + J'')u_{\delta} + 3(H' + I' + M')v_{\delta} + 3(H'' + I'' + K'')w_{\delta} = 3\rho L\delta_{2\delta}.$$

Thus we have

Theorem 3.1. If the T-tensor of a five-dimensional Finsler space is of the form (A), then ρ is given by

$$\rho = \frac{H_{,2}}{3L} = \frac{1}{6}C_{,2} = \frac{1}{6}Cu_3 = \frac{1}{6}Cv_4 = \frac{1}{6}Cw_5.$$

Theorem 3.2. The scalar components of v-connection vectors u_i and v_i of a five-dimensional Finsler space with T-tensor of the form (A) are given by

$$u_1 = 0,$$
 $u_2 = 0,$ $u_3 = C^{-1}C_{,2},$ $u_4 = 0,$ $u_5 = 0,$ $v_1 = 0,$ $v_2 = 0,$ $v_3 = 0,$ $v_4 = C^{-1}C_{,2},$ $v_5 = 0,$ $w_1 = 0,$ $w_2 = 0,$ $w_3 = 0,$ $w_4 = 0,$ $w_5 = C^{-1}C_{,2}.$

IV. T-TENSOR OF FORM (B)

Ikeda [8] showed that for an *n*-dimensional Finsler space with *T*-tensor of the form (B)

$$T_{hijk} = h_{hi}P_{jk} + h_{hj}P_{ik} + h_{hk}P_{ij} + h_{ij}P_{hk} + h_{ik}P_{hj} + h_{jk}P_{hi},$$

we get

$$P_{ij} = \frac{1}{n+3} \left\{ T_{ij} - \frac{T}{2(n+1)} h_{ij} \right\},\,$$

where $T_{ij} = T_{hijk} g^{hk}$ and $T = T_{ij} g^{ij}$.

Therefore (B) becomes

$$T_{hijk} = \frac{1}{n+3} (h_{hi}T_{jk} + h_{hj}T_{ik} + h_{hk}T_{ij} + h_{ij}T_{hk} + h_{ik}T_{hj} + h_{jk}T_{hi}) - \frac{T}{(n+1)(n+3)} (h_{hi}h_{jk} + h_{hj}h_{ik} + h_{hk}h_{ij}).$$

Thus, for a five-dimensional Finsler space, we have

$$T_{hijk} = \frac{1}{8} [(h_{hi}T_{jk} + h_{hj}T_{ik} + h_{hk}T_{ij} + h_{ij}T_{hk} + h_{ik}T_{hj} + h_{jk}T_{hi}) - \frac{T}{6} (h_{hi}h_{jk} + h_{hj}h_{ik} + h_{hk}h_{ij})]. \quad (4.1)$$

Let $T_{\alpha\beta}$ be the scalar components of LT_{hi} , i.e.,

$$LT_{hi} = T_{\alpha\beta}e_{\alpha)h} e_{\beta)i}.$$

In view of (2.12) and (4.1), we get

$$\begin{split} &(C_{\alpha\beta\gamma;\delta} + C_{\beta\gamma\delta}\delta_{1\alpha} + C_{\alpha\gamma\delta}\delta_{1\beta} + C_{\alpha\beta\delta}\delta_{1\gamma}) = \frac{1}{8} [\{(\delta_{\alpha\beta} - \delta_{1\alpha}\delta_{1\beta})T_{\gamma\delta} + (\delta_{\alpha\gamma} - \delta_{1\alpha}\delta_{1\gamma})T_{\beta\delta} \\ &+ (\delta_{\alpha\delta} - \delta_{1\alpha}\delta_{1\delta})T_{\beta\gamma} + (\delta_{\beta\gamma} - \delta_{1\beta}\delta_{1\gamma})T_{\alpha\delta} + (\delta_{\beta\delta} - \delta_{1\beta}\delta_{1\delta})T_{\alpha\gamma} + (\delta_{\gamma\delta} - \delta_{1\gamma}\delta_{1\delta})T_{\alpha\beta}\} \\ &- \frac{LT}{6} [\{(\delta_{\alpha\beta} - \delta_{1\alpha}\delta_{1\beta})(\delta_{\gamma\delta} - \delta_{1\gamma}\delta_{1\delta}) + (\delta_{\alpha\gamma} - \delta_{1\alpha}\delta_{1\gamma})(\delta_{\beta\delta} - \delta_{1\beta}\delta_{1\delta}) \\ &+ (\delta_{\alpha\delta} - \delta_{1\alpha}\delta_{1\delta})(\delta_{\beta\gamma} - \delta_{1\beta}\delta_{1\gamma})\}, \end{split}$$

which gives

$$\begin{split} C_{222;\delta} &= \frac{1}{8} [3T_{2\delta} + 3T_{22}\delta_{2\delta} - \frac{1}{2}LT\delta_{2\delta}], \\ C_{233;\delta} &= \frac{1}{8} [T_{33}\delta_{2\delta} + T_{2\delta} + 2T_{23}\delta_{3\delta} - \frac{1}{6}LT\delta_{2\delta}], \\ C_{244;\delta} &= \frac{1}{8} [T_{44}\delta_{2\delta} + T_{2\delta} + 2T_{24}\delta_{4\delta} - \frac{1}{6}LT\delta_{2\delta}], \\ C_{255;\delta} &= \frac{1}{8} [T_{55}\delta_{2\delta} + T_{2\delta} + 2T_{25}\delta_{5\delta} - \frac{1}{6}LT\delta_{2\delta}], \\ C_{322;\delta} &= \frac{1}{8} [T_{22}\delta_{3\delta} + T_{3\delta} + 2T_{33}\delta_{2\delta} - \frac{1}{6}LT\delta_{3\delta}], \\ C_{333;\delta} &= \frac{1}{8} [3T_{3\delta} + 3T_{33}\delta_{3\delta} - \frac{1}{2}LT\delta_{3\delta}], \\ C_{344;\delta} &= \frac{1}{8} [T_{44}\delta_{3\delta} + T_{3\delta} + 2T_{34}\delta_{4\delta} - \frac{1}{6}LT\delta_{3\delta}], \\ C_{355;\delta} &= \frac{1}{8} [T_{25}\delta_{3\delta} + T_{3\delta} + 2T_{35}\delta_{5\delta} - \frac{1}{6}LT\delta_{3\delta}], \\ C_{224;\delta} &= \frac{1}{8} [T_{22}\delta_{4\delta} + T_{4\delta} + 2T_{24}\delta_{2\delta} - \frac{1}{6}LT\delta_{4\delta}], \\ C_{225;\delta} &= \frac{1}{8} [T_{22}\delta_{5\delta} + T_{5\delta} + 2T_{25}\delta_{2\delta} - \frac{1}{6}LT\delta_{5\delta}], \\ C_{334;\delta} &= \frac{1}{8} [T_{4\delta} + 2T_{34}\delta_{3\delta} + T_{33}\delta_{4\delta} - \frac{1}{6}LT\delta_{4\delta}], \\ C_{335;\delta} &= \frac{1}{8} [T_{5\delta} + 2T_{35}\delta_{3\delta} + T_{33}\delta_{5\delta} - \frac{1}{6}LT\delta_{4\delta}], \\ C_{444;\delta} &= \frac{1}{8} [T_{4\delta} + 2T_{34}\delta_{3\delta} + T_{33}\delta_{5\delta} - \frac{1}{6}LT\delta_{5\delta}], \\ C_{455;\delta} &= \frac{1}{8} [T_{5\delta} + 2T_{35}\delta_{5\delta} + T_{55}\delta_{4\delta} - \frac{1}{6}LT\delta_{5\delta}], \\ C_{445;\delta} &= \frac{1}{8} [T_{5\delta} + 2T_{35}\delta_{5\delta} - \frac{1}{2}LT\delta_{5\delta}], \\ C_{445;\delta} &= \frac{1}{8} [T_{5\delta} + 2T_{45}\delta_{5\delta} + T_{55}\delta_{4\delta} - \frac{1}{6}LT\delta_{5\delta}], \\ C_{455;\delta} &= \frac{1}{8} [T_{5\delta} + 2T_{45}\delta_{5\delta} + T_{55}\delta_{5\delta} - \frac{1}{6}LT\delta_{5\delta}], \\ C_{445;\delta} &= \frac{1}{8} [T_{5\delta} + 2T_{45}\delta_{5\delta} + T_{55}\delta_{5\delta} - \frac{1}{6}LT\delta_{5\delta}]. \\ \end{array}$$

Putting (4.2) into (2.10), we get

$$(LC)_{;\delta} = \frac{1}{8} [6T_{2\delta} + (3T_{22} + T_{33} + T_{44} + T_{55})\delta_{2\delta} + 2T_{23}\delta_{3\delta} + 2T_{24}\delta_{4\delta} + 2T_{25}\delta_{5\delta} - LT\delta_{2\delta}],$$

$$LCu_{\delta} = \frac{1}{8} [6T_{3\delta} + (3T_{33} + T_{22} + T_{44} + T_{55})\delta_{3\delta} + 2T_{23}\delta_{2\delta} + 2T_{34}\delta_{4\delta} + 2T_{35}\delta_{5\delta} - LT\delta_{3\delta}],$$

$$LCv_{\delta} = \frac{1}{8} [6T_{4\delta} + (3T_{44} + T_{22} + T_{33} + T_{55})\delta_{4\delta} + 2T_{24}\delta_{2\delta} + 2T_{34}\delta_{3\delta} + 2T_{45}\delta_{5\delta} - LT\delta_{4\delta}],$$

$$LCw_{\delta} = \frac{1}{8} [6T_{5\delta} + (T_{22} + T_{33} + T_{44} + 3T_{55})\delta_{5\delta} + 2T_{25}\delta_{2\delta} + 2T_{35}\delta_{3\delta} + 2T_{45}\delta_{4\delta} - LT\delta_{5\delta}].$$

Therefore,

$$(LC)_{:2} = \frac{1}{8} \{9T_{22} + T_{33} + T_{44} + T_{55} - LT\},$$

$$(LC)_{:3} = T_{23}, \qquad (LC)_{:4} = T_{24}, \qquad (LC)_{:5} = T_{25},$$

$$LCu_{2} = T_{23}, \qquad LCu_{3} = \frac{1}{8} \{T_{22} + 9T_{33} + T_{44} + T_{55} - LT\},$$

$$LCu_{4} = T_{34}, \qquad LCu_{5} = T_{35}, \qquad LCv_{2} = T_{24}, \qquad LCv_{3} = T_{34},$$

$$LCv_{4} = \frac{1}{8} \{T_{22} + T_{33} + 9T_{44} + T_{55} - LT\}, \qquad LCv_{5} = T_{45},$$

$$LCw_{2} = T_{25}, \qquad LCw_{3} = T_{35}, \qquad LCw_{4} = T_{45},$$

$$LCw_{5} = \frac{1}{8} \{T_{22} + T_{33} + T_{44} + 9T_{55} - LT\}.$$

$$(4.3)$$

From $T = T_{ii} g^{ij}$, we find

$$LT = T_{\alpha\beta}\delta_{\alpha\beta} = T_{\alpha\alpha} = T_{22} + T_{33} + T_{44} + T_{55}.$$

Thus, in view of (4.3), we have

Theorem 4.1. If the T-tensor of a five-dimensional Finsler space is of the form (B), the scalar components of the tensor T_{ij} are given by

$$\begin{split} T_{1\alpha} &= 0, & T_{22} &= (LC)_{;2}, & T_{33} &= LCu_3, \\ T_{44} &= LCv_4, & T_{55} &= LCw_5, & T_{23} &= LCu_2 &= (LC)_{;3}, \\ T_{24} &= LCv_2 &= (LC)_{;4}, & T_{25} &= LCw_2 &= (LC)_{;5}, & T_{34} &= LCu_4 &= LCv_3, \\ T_{35} &= LCu_5 &= LCw_3, & T_{45} &= LCw_4 &= LCv_5, \end{split}$$

and

$$T = C_{:2} + Cu_3 + Cv_4 + Cw_5.$$

V. T-TENSOR OF FORM (C)

U. P. Singh et al. [4] showed that the *T*-tensor of a C-2 like Finsler space is of the form (C) $T_{hijk} = \rho C_h C_i C_j C_k + a_h C_i C_j C_k + a_i C_h C_j C_k + a_j C_h C_i C_k + a_k C_h C_i C_j.$

Let a_{α} be the scalar components of La_{i} , i.e.,

$$La_i = a_\alpha e_{\alpha)i}.$$

Since $e_{2)i} = C_i / C$, we get $C_i = C \delta_{2\alpha} e_{\alpha)i}$.

Therefore in view of (2.12) and (C), we have

$$\begin{split} (C_{\alpha\beta\gamma;\delta} + C_{\beta\gamma\delta}\delta_{1\alpha} + C_{\alpha\gamma\delta}\delta_{1\beta} + C_{\alpha\beta\delta}\delta_{1\gamma}) &= \rho L C^4 \delta_{2\alpha}\delta_{2\beta}\delta_{2\gamma}\delta_{2\delta} + C^3 (a_{\alpha}\delta_{2\beta}\delta_{2\gamma}\delta_{2\delta} \\ &+ a_{\beta}\delta_{2\alpha}\delta_{2\gamma}\delta_{2\delta} + a_{\gamma}\delta_{2\alpha}\delta_{2\beta}\delta_{2\delta} + a_{\delta}\delta_{2\alpha}\delta_{2\beta}\delta_{2\gamma}), \end{split}$$

which gives

$$\begin{split} &C_{222;\delta} = C^3(\rho LC + 3a_2)\delta_{2\delta} + C^3a_{\delta}, \quad C_{233;\delta} = 0, \qquad C_{244;\delta} = 0, \quad C_{255;\delta} = 0, \\ &C_{322;\delta} = C^3a_3\delta_{2\delta}, \qquad C_{333;\delta} = 0, \qquad C_{344;\delta} = 0, \quad C_{355;\delta} = 0, \\ &C_{224;\delta} = C^3a_4\delta_{2\delta}, \qquad C_{225;\delta} = C^3a_5\delta_{2\delta}, \quad C_{444;\delta} = 0, \quad C_{334;\delta} = 0, \\ &C_{335;\delta} = 0, \qquad C_{455;\delta} = 0, \qquad C_{455;\delta} = 0, \quad C_{445;\delta} = 0. \end{split}$$

Putting (5.1) into (2.10), we get

$$(LC)_{;\delta} = C^{3}(\rho LC + 3a_{2})\delta_{2\delta} + C^{3}a_{\delta}, \quad LCu_{\delta} = C^{3}a_{3}\delta_{2\delta},$$

$$LCv_{\delta} = C^{3}a_{4}\delta_{2\delta}, \qquad LCw_{\delta} = C^{3}a_{5}\delta_{2\delta}.$$

Since T_{hiik} is an indicatory tensor, from (C) it follows that $a_1 = a_i y^i = 0$. Thus, we have:

Theorem 5.1. If the T-tensor of a five-dimensional Finsler space is of the form (C), the scalar components a_{α} of the La_{i} are given by

$$a_1 = 0$$
, $a_2 = \frac{L}{4}(C^{-3}C_{;2} - \rho C)$, $a_3 = LC^{-1}u_2 = C^{-3}(LC)_{;3}$,
 $a_4 = LC^{-2}v_2 = C^{-3}(LC)_{;4}$, $a_5 = LC^{-2}w_2 = C^{-3}(LC)_{;5}$.

Theorem 5.2. In a five-dimensional Finsler space with T-tensor of the form (C), the scalar components of v-connection vectors u_i , v_i and w_i are given by

$$LCu_{\delta} = C^3 a_3 \delta_{2\delta}, \quad LCv_{\delta} = C^3 a_4 \delta_{2\delta}, \quad LCw_{\delta} = C^3 a_5 \delta_{2\delta}.$$

Corollary 5.1. In a five-dimensional Finsler space with T-tensor of the form (C), the v-connection vectors u_i , v_i and w_i vanish if the scalar components a_3 , a_4 and a_5 of La_i vanish.

VI. T-2 LIKE FINSLER SPACE

A non-Riemannian Finsler space $F^n(n > 2)$ is called T-2 like Finsler space if the T-tensor T_{hijk} is written in the form

$$T_{hiik} = \rho C_h C_i C_i C_k. \tag{6.1}$$

Theorem 6.1. In a T-2 like five-dimensional Finsler space, the v-connection vectors u_i , v_i and w_i vanish.

Theorem 6.2. In a T-2 like five-dimensional Finsler space, ρ is given by

$$\rho = C^{-4}C_{:2}$$
.

REFERENCES

- [1]. H. Kawaguchi: On Finsler spaces with the vanishing second curvature tensor, Tensor, N. S., 26 (1972), 250-254.
- [2]. M. Matsumoto: v-transformations of Finsler spaces I. Definition, infinitesimal transformations and isometries, J. Math. Kyoto Univ., 12 (1972), 479-512.
- [3]. U. P. Singh, P. N. Agrawal and B. N. Prasad: On Finsler spaces with *T*-tensor of some special forms, Indian J. Pure Appl. Math., 13-2 (1982), 172-182.
- [4]. U. P. Singh, P. N. Agrawal and B. N. Prasad: On a special form of *T*-tensor and *T2*-like Finsler space, Indian J. Pure Appl. Math., 13-9 (1982), 997-1005.
- [5]. M. Matsumoto: Foundations of Finsler geometry and special Finsler spaces, Kaiseisha Press, Saikawa, Ostu, 520 (1986), Japan.
- [6]. F. Ikeda: On the tensor T_{iikl} of Finsler spaces, Tensor, N. S., 33 (1979), 203-209.
- [7]. M. Matsumoto: On Finsler spaces with Rander's metric and special forms of important tensors, J. Math. Kyoto Univ., 14-3 (1974), 477-498.
- [8]. F. Ikeda: On the tensor T_{iikl} of Finsler spaces II, Tensor, N. S., 34 (1980), 85-93.

- [9]. Gauree Shanker, G. C. Chaubey and Vinay Pandey: On the main scalars of a five-dimensional Finsler space, International Electronic J. Pure and Applied Math., 5 (2012), 69-78.
- [10]. Anamika Rai and S. K. Tiwari: A five-dimensional C^h symmetric Finsler space with constant unified main scalar, J. International Academy of Physical Sciences, 20-2 (2016), 73-83.
- [11]. Anamika Rai and S. K. Tiwari: On a five-dimensional Finsler spaces with vanishing *v*-connection vectors, accepted for publication in South Asian Journal of Mathematics.

Anamika Rai* . "Five-Dimensional Finsler Spaces with T-Tensor of Some Special forms." International Journal Of Engineering Research And Development , vol. 13, no. 12, 2017, pp. 63–71.