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I. INTRODUCTION 
In the context of the Enestrom-Kakeya Theorem [4]  which states that all the zeros of a polynomial 
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Various bounds for the number of zeros of a polynomial with certain conditions on the coefficients were 

afterwards given by researchers in the field (e.g. see [1],[2],[3]). 

 

II. MAIN RESULTS 
In this paper we find a bound for the number of zeros of a polynomial  in a closed disc of radius less 

than 1 and prove 
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Taking ja  real i.e. njj ,.....,2,1,0,0  ,  Theorem 1 reduces to the following result: 
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and    
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Taking 1  in Cor. 1 , we get the following result: 
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Taking 1k  in Cor. 1 , we get the following result: 
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Taking 1  in Theorem 1 , we get the following result: 
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  Taking 1k  in Theorem 1 , we get the following result: 
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Similarly for other different values of the parameters, we get many other interesting results. 

 

III. LEMMA 
For the proof of Theorem 1, we need the following result: 

Lemma: Let f (z) be analytic for 0)0(,1  fz  and Mzf )( for 1z . Then the number of zeros of 
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(for reference see [6] ). 

 

IV. PROOF OF THEOREM 1 
Consider the polynomial  
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of F(z) in  10,  z  des not exceed 
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Since the zeros of P(z) are also the zeros of F(z) , it follows that the number of zeros 
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That completes the proof of Theorem 1. 
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