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ABSTRACT:- The Information groundwater levels are very important in the management of tidal lowland, 

especially for food crop farming. This study aims to perform modelling groundwater levels using Extreme 

Learning Machine (ELM) paralleled with the Particle Swarm Optimization (PSO). PSO is used to set the value 

of the input weights and hidden biases on ELM methods in order to improve the performance of the method 

ELM. Groundwater levels are modelled is hourly groundwater level at tertiary block. Data input for modelling 

is the water level in the channel, rainfall and temperature. Results of ground water level predictions using ELM-

PSO is better than predictions of groundwater levels using ELM. Based on these results, the ELM-PSO can be 

used in predicting groundwater levels, so as to assist decision makers in determining water management 

strategies and the determination of appropriate cropping pattern in tidal lowland. 
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I. INTRODUCTION 
West Kalimantan, Indonesia has an area of lowland approximately 2.94 million hectares, consists of 

tidal lowlands and non-tidal lowlands. Lowland areas mainly located in coastal areas, in Kubu Raya district, 

Pontianak district, Bengkayang district, Sambas district, Ketapang district and Singkawang district. Back swamp 

contained in Kapuas Hulu. Approximately 70% of lowlands in West Kalimantan potential to be developed for 

food crops, plantations, farms and settlements. Tidal lowland management for food crop farming activities 

should be supported by the ground water level information. The success of farming in tidal wetlands, especially 

food crops, should be supported by the management of water [1]. Groundwater levels can be used as indicators 

of the availability of water for planting pattern [2]. Groundwater levels can be determined by predicting 

groundwater levels, therefore, necessary modelling can predict groundwater levels are accurate to obtain 

information on the ground water level tidal lowland land. 

Modelling for predicting groundwater levels, in research using hybrid between Extreme Learning 

Machine (ELM) and Particle Swarm Optimization (PSO). ELM used in modelling will be improved to increase 

the performance of ELM using PSO. PSO is used to set the value of the input weights and hidden biases in the 

methods ELM, in order to improve the performance of the method ELM. PSO based repair ELM is relatively 

new, since the implementation of the modelling of groundwater flow in tidal lowland land use methods for 

modelling like this has never been done.The data used in this study is the water level in the channel, rainfall, and 

air temperature, while the outcome of this study is the height of ground water level in tidal lowland land. 

The end result of this research can be used to predict the groundwater level in tidal lowland land as the 

basis for determining water management strategies and the use of farm land, particularly for food crops. 

 

II. EXTREME LEARNING MACHINE (ELM) 
ELM learning method is applied to minimize the disadvantages of artificial neural networks 

specifically in case of learning speed. Input weight and hidden bias of ELM are determined randomly, therefore 

ELM could perform higher learning speed and good generalization performance [3].  

According to Huang [4], standard mathematical model for SLFNs with N hidden nodes and g(x) 

activation functions for N different samples  ii tx , , where   nT
iniii xxxx R...,, 21  and 

  mT
imiii tttt R...,, 21   is expressed by: 
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 Tiniii wwww ,...,, 21  : weight vector which connects ith hidden nodes and input nodes 

 Timiii  ,...,, 21
 : weight vector which connects ith hidden nodes and output nodes 

ib
  :  ith hidden nodes threshold 

jxiw
 : iw

and jx
 inner products 

 

SLFNs with N
~

hidden nodes and activation function  xg  are assumed to be able to predict as many 

as N samples with zero error. Thus, it can be notated as:  
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This formula can be simply expressed as: 

H = T            (3) 

where: 
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Where H in this expression (4) refers to hidden layer output matrix of neural network. Meanwhile, 

 111 bxwg   indicates hidden nodes output which are related to input.   is the output weight matrix and T    

matrix of the target or output.  

Input weight and hidden bias in ELM are determined randomly. Thus, output weight related to hidden 

layer can be determined by expression (3). 

̂ =H T T           (6) 

 

III. PARTICLE SWARM OPTIMIZATION (PSO) 
PSO is a stochastic optimization technique based on population, developed by Dr. Eberhart and Dr. 

Kennedy in 1995 [5]-[13]. PSO method or pattern inspired by the activities of a group of birds when searching 

for food. When the birds will find food, then it will move in a group of birds in large numbers. When it finds 

large amounts of food and then the birds will mutually inform each other with regard to the presence of food. So 

that all parts of the group would obtain food. These properties were subsequently became the inspiration to 

develop methods of optimization PSO. 

Some common terms used in Particle Swarm Optimization (PSO) can be defined as follows: 1). Swarm: 

a population of an algorithm, 2). Particle: members (people) in a swarm. Each particle represents a potential 

solution to the problems solved. The position of a particle is determined by the representation of the current 

solution, 3). Pbest (personal best): the best position of each particle indicates the particle positions are prepared 

to get a best solution, 4). Gbest (Global best): the best position of all particles in the swarm, 5). Velocity: vectors 

that drive optimization process that determines the direction in which a particle is needed to move to correct the 

original position, 6). Inertia weight: inertia weight w symbolized, this parameter is used to control the impact of 

the velocity that is given by a particle [13]. 

In recent years, PSO applied to several research and other applications successfully. This shows that 

the PSO method, the result is a better and faster and cheaper than other methods. Another reason why PSO is 

more interesting is the use of few parameters. PSO can work well on a wide application with one simple version 
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IV. STUDY AREA 
The data used in this study are primary data, covering the water level in the secondary channel, water 

level in the channel, rainfall, and temperature. Observations made at tertiary TR7-TR9 secondary block Bintang 

Mas II lowland area RasauJaya, West Kalimantan Province. Observations made during 72 hours. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: The map of Rasau Jaya lowland area [14] 

 

 

Data input and output in the PSO-ELM network should be normalized so as to have a value with a 

specific range. This is necessary because the activation function used will produce the output data range [-1,1]. 

Training data in this study are normalized, so it has a value range [-1,1]. 

 

V. METHODS 
A. Initialization of Population 

If one assumes that there is a system with N (dimension of the search space) mass, the mass of the ith 

position is explained as follows. At first, the position of the mass is fixed randomly. 

  Nixxxx n
i

d
iii ,,1,,,,,1                          (7) 

 

Where: 
d
ix  = Position of the ith mass in dth dimension. 

B. Extreme learning machine 

Several stages to go through in the ground water level prediction using ELM are as follows: 

1) Data Distribution 

Training and testing process are absolutely necessary in the prediction process using ELM. Training process was 

used to develop a model of the ELM while testing was used to evaluate the ability of ELM as forecasting tool. 

Therefore the data were divided into two, namely the training data and the testing data. Data were shared with 

the ratio of 60:40, ie 60% for training and 40% for testing. 
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Fig. 2: Flowchart of ELM-PSO 
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2) Calculation of Fitness 

The objective function for the ELM-PSO is the mean square error (RMSE), 
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Where: iii FXe   

Best and worst fitness is calculated on each iteration of this objective function evaluation: 
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Where: 

)(tfit j =fitness of agent j at time t. 

 tbest and  tworst  =the whole of best agent fitness (minimal) and worst (maximum). 

 

VI. RESULTS AND DISCUSSIONS 
The convergence results (predictions) using improved ELM based on PSO are as follows:  
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Fig. 3: Convergence of improved ELM based on PSO 

 

ELM improved convergence curve based on PSO in RMSE settings is shown in Figure 3. 

Characteristics of convergence suggests that the RMSE through improved ELM settings based on PSO is able to 

produce a lower RMSE value compared to using standard ELM. 

 

The testing results (predictions) using improved ELM based on PSO are as follows:  
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Fig. 4: Groundwater level P1 as a result from the Testing using ELM-PSO 
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Fig. 5: Groundwater level P2 as a result from the Testing using ELM-PSO 
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Fig. 6: Groundwater level P3 as a result from the Testing using ELM-PSO 
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Fig. 7: Groundwater level P4 as a result from the Testing using ELM-PSO 
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Fig. 8: Groundwater level P5 as a result from the Testing using ELM-PSO 

 

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

E
le

v
a

ti
o

n
 (

m
)

Time (Hour)

Well P6-Observation Well P6-ELMPSO

 
Fig. 9: Groundwater level P6 as a result from the Testing using ELM-PSO 
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Fig. 10: Groundwater level P7 as a result from the Testing using ELM-PSO 
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Fig. 11: Groundwater level P8 as a result from the Testing using ELM-PSO 
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Fig. 12: Groundwater level P9 as a result from the Testing using ELM-PSO 
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Fig. 13: Groundwater level P10 as a result from the Testing using ELM-PSO 
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Fig. 14: Groundwater level P11 as a result from the Testing using ELM-PSO 
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Fig. 15: Groundwater level P12 as a result from the Testing using ELM-PSO 

 

Figure 4, Figure 5, Figure 6, Figure 7, Figure 8, Figure 9, Figure 10, Figure 11, Figure 12, Figure 13, 

Figure 14, and Figure 15 shows that the ground water level as a result from prediction on well-P1, well-P2, 

well-P3, well-P4, well-P5, well-P6, well-P7, well-P8, well-P9, well-P10, well-P11, and well-P12 using ELM-

PSO has a relatively small error rate value. It meant that the result of the prediction was the same as the result of 

observation. Therefore, it can be concluded that the prediction on groundwater level was successful. The values 

of the error rate as a result of the prediction were as follows: RRMSE well-P1 = 0.0400, RRMSE well-P2= 

0.0407, RRMSE well-P3= 0.0401, RRMSE well-P4= 0.0407, RRMSE well-P5= 0.0263, RRMSE well-P6= 

0.0173, RRMSE well-P7= 0.0214, RRMSE well-P8= 0.0257, RRMSE well-P9= 0.0276, RRMSE well-P10= 

0.0146, RRMSE well-P11= 0.0428, and RRMSE well-P12= 0.0793. 

 

VII. CONCLUSIONS 
This research use improvement based ELM ELM-called PSO and PSO for modelling of the 

groundwater level. The results showed that the use of simulation-based ELM improved PSO result RRMSE 

value which is smaller than using ELM. 
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