
International Journal of Engineering Research and Development

e-ISSN: 2278-067X, p-ISSN: 2278-800X, www.ijerd.com

Volume 13, Issue 7 (July 2017), PP.06-12

6

Design of Synthesizable Asynchronous FIFO And

Implementation on FPGA

Hemant Kaushal
1
 , Tushar Puri

2

1 Student, School Of Electronics, M.Techvlsi(2015-17),CDAC–Noida, Hemantkaushal76@Gmail.Com

2 Student, School Of Electronics, M.Tech VLSI (2015-17), CDAC–Noida, Tshr.Pr@Gmail.Com

ABSTRACT: This paper presents a design of asynchronous FIFO which, along with the regular status signals,

consists of some extra status signals for more user-friendly design and added safety. Gray code pointers are used

in the design. For synchronisation purpose, two synchroniser modules are used which contain two D-flip-flops

each. The design is implemented and synthesised at register transfer level (RTL) using Verilog HDL. Simulation

and implementation is done using Xilinx ISE Design Suite. Further, the design is implemented on Basys 2

Spartan-3E FPGA Board. Asynchronous FIFO is used to carry out steady data transmission at high speeds

between two asynchronous clock domains.

Keywords: Asynchronous FIFO; FPGA; Verilog HDL.

I. INTRODUCTION
Asynchronous FIFO is a design in which the data is written into the FIFO memory in one clock domain

and is read from the same memory in another clock domain. The two clock domains are asynchronous to each

other. Asynchronous FIFO is used in asynchronous communication where write and read speeds are different.

Hence, by using them we can safely pass data from one clock domain to the other clock domain. The main

problem which arises here is the generation of FIFO pointers (read pointer and write pointer) and comparing

them to find FIFO full and empty conditions. The write pointer points to the next location to be written into the

memory and read pointer points to the current location to be read from the memory. They both are set to zero on

reset. The generation of FIFO pointers is of utmost importance because they are clocked at different clocks so

they need to be synchronised if they are used in other clock domain. These synchronised pointers are then

compared to generate full and empty conditions.

Empty condition arises when read pointer and write pointer both are equal. This condition can happen

when both pointers are reset to zero or when read pointer catches up the write pointer i.e. the last word from the

FIFO has been read. Full condition arises when the pointers are again equal but this time write pointer catches

up the read pointer i.e. the last location of the FIFO memory has been written. To distinguish between these two

conditions, one extra bit is added to each pointer. Thus, if all the bits except MSBs of both the pointers are equal

then FIFO is full. Also, if all the bits including MSBs of both the pointers are equal then FIFO is empty. For a

FIFO with 2
(n-1)

 writable locations, n-bit pointers are used where (n-1) bits are required to address the FIFO

memory. To generate FIFO full and empty conditions, the two pointers are compared in different clock domains

i.e. read pointer should be synchronised with the write clock domain to be compared with the write pointer and

vice-versa. Gray coded values are used instead of binary values for the pointers because every single bit can

change simultaneously in the case of binary pointers, thus synchronising binary values is problematic. Gray

codes allow only one bit to change for each clock transition, eliminating the problem of synchronising multiple

bits at a time.

„Overflow‟ and „underflow‟ status bits are added to the design to indicate that the FIFO is full (empty) and still

the data is being written (read) to (from) the FIFO memory. „Near full‟ and „near empty‟ signals are also added

to the design to avoid overflow and underflow respectively. These two signals are added to make the FIFO more

practical to be controlled by the user. A safe FIFO design includes these four signals at the expense of slightly

larger and somewhat slower implementation. The foremost benefit of using an asynchronous design against

synchronous one is the avoidance of clock skew. As the feature size is becoming smaller and smaller, the clock

skew problem has become inevitable with respect to deep submicron technology. The International Technology

Roadmap for Semiconductors (ITRS), 2008 edition, recounts a clear requisite of asynchronous communication

protocols for control and synchronisation in integrated circuits. The asynchronous FIFO is used in speed

bridges, bulk data transfer by DMA across chip, rate matching video interface, interfacing with processor and

bus system and communicating to off-chip components. FIFO is widely used in Globally Asynchronous Locally

Synchronous (GALS) system. Disk controllers use FIFO as a disk scheduling algorithm and determine the order

to service output and input requests. FIFO is used in electronic circuits mainly for buffering and flow control.

Design Of Synthesizable Asynchronous Fifo And Implementation On Fpga

7

The paper is organised as follows: Section II describes the architecture of asynchronous FIFO and

explains each of its module in detail. Section III describes Simulation Results which include simulated

waveforms, RTL schematic of asynchronous FIFO, timing report and design utilisation summary. Section IV

presents realisation of the design on FPGA.

II. MODULE DESCRIPTION
In this section, all the modules in the design are explained one by one. Verilog HDL is used to code the

design. The tool used for simulation and implementation of the design is Xilinx ISE Design Suite with ISim as

simulator

A.FIFO_top

It is the top module of the design. All other constituting modules are instantiated inside this module.

This module can be instantiated inside the system that will use the FIFO. This top module is synthesized,

implemented and then converted into the bit file required for implementation of the design on FPGA. This bit

file is then dumped on the FPGA. Write clock (wr_clk) domain signals include 3 input signals, which are

data_in, wr_rstn and wenable, and 3 output signals, which are full, near_full and overflow. Read clock (rd_clk)

domain signals include 3 input signals, which are data_out, rd_rstn and renable, and 3 output signals, which are

empty, near_empty and underflow.At positive edge of wr_clk, data_in is latched onto FIFO memory if wenable

is high. And at positive edge of rd_clk, data_out is taken out from FIFO memory if renable is high. wr_rstn and

rd_rstn signals are used to reset the FIFO.

Figure 1: Top module FIFO_top

B. FIFO_mem

This is the storage memory for FIFO. The design has 16 addressable locations in the memory. It

requires 4 bits to address these locations. The memory is typically a dual-port synchronous write synchronous

read memory. To make the FIFO design parameterised, the number of bits required to address the FIFO memory

and data size are both made parameterised using keyword „parameter‟ in Verilog HDL. This makes data_in and

data_out parameterised as well. Making the design parameterised is useful as the implementation can be

modified as per the application.

Figure 2: FIFO memory module FIFO_mem

Design Of Synthesizable Asynchronous Fifo And Implementation On Fpga

8

C. sync_r2w
This is the synchroniser module that is used to synchronise the read pointer to write clock domain. As

shown in figure 4, sync_r2w (also sync_w2r) contains two D-Flip-flops for its working. The two flip-flops are

clocked by the destination clock.

Figure 3: Synchroniser module sync_r2w

Figure 4: Two D-FFs in synchroniser module

D. sync_w2r

This is the synchroniser module that is used to synchronise the write pointer to read clock domain.

Figure 5: Synchroniser module sync_w2r

Design Of Synthesizable Asynchronous Fifo And Implementation On Fpga

9

E. rptr_empty
This module is synchronous to read clock domain and contains logic for empty, near_empty and

underflow. Near_empty (also near_full) is also made parameterised. This module also contains binary to gray

code converter which converts binary read pointer to its gray code equivalent. By doing this, FIFO is made

reconfigurable at run-time and we can change this value as per the need.

Figure 6: Module containing empty, near_empty and underflow logic

F.wptr_full

This module is synchronous to write clock domain and contains logic for full, near_full and overflow.

This module also contains binary to gray code converter which converts binary write pointer to its gray code

equivalent.

Figure 7: Module containing full, near_full and verflow logic

III. SIMULATION RESULTS
This section presents simulation results for the FIFO. The simulator used is ISim which gives

waveforms that proves the correct functionality of the design. The read and write clocks are both asynchronous

to each other and all the signals are positive edge triggered in their respective clock domains. Near full margin

(near_full_mrgn) and near empty margin (near_empty_mrgn) values are both set to 3. It means that near_full

signal should become high when the difference between write and read pointers becomes equal or greater than

12. Also, near_empty signal should become high when the difference between write and read pointers becomes

equal to or less than 3. Near full margin (near_full_mrgn) and near empty margin (near_empty_mrgn) values are

both set to 3. It means that near_full signal should become high when the difference between write and read

pointers becomes equal or greater than 12. Also, near_empty signal should become high when the difference

between write and read pointers become equal or less than 3.Figure 9 shows the synthesised RTL schematic of

the asynchronous FIFO. Figure 10 shows the Design Utilization Summary which was obtained from Xilinx ISE

Design Suite.

Design Of Synthesizable Asynchronous Fifo And Implementation On Fpga

10

Figure 8: Simulation Waveform

Figure 9: RTL schematic of Asynchronous FIFO

Figure 10: Device utilisation summary

Design Of Synthesizable Asynchronous Fifo And Implementation On Fpga

11

The timing report is also extracted which gives timing details (at Speed Grade -4). The minimum period of the

design turns out to be 6.809 ns i.e. maximum frequency is 146.864 MHz.

Figure 11: Timing report summary

IV. FPGA REALISATION

The bit file generated by implementing the asynchronous FIFO design is downloaded onto FPGA. The

FPGA used is Basys 2 Spartan-3E FPGA Board. It is used in the configuration xc3s100e-4cp132. For

implementing the design on Spartan 3E FPGA, we take some data inputs from a predefined memory. These

data inputs are saved in this memory and from there they are given to the FIFO memory (FIFO_mem) as

„data_in‟The write and read clocks are downgraded to 1 second and 2 second respectively by applying counters

to the main clock. This is done to show the „data_out‟ on the seven segment display. The 20ns (50 MHz) clock

will not be able to do the same. The output will not be seen with the naked eye if 20ns clock is used. Also the

output LEDs will turn on in no time if 20ns clock is used. So, to illustrate the working of the FIFO on FPGA,

downgrading of the clocks is done. The „data_out‟ is also shown on seven segment display. Some scenarios are

shown in figure 11, figure 12 and figure 13.„renable‟, „rd_rstn‟, „wenable‟ and „wr_rstn‟ are implemented on

slide switches. „empty‟, „near_empty‟, „underflow‟, „full‟, „near_full‟ and „overflow‟ are implemented on

LEDs

Figure 12: „renable=1‟ when „empty=1‟ condition is reached, results in „underflow=1‟

Design Of Synthesizable Asynchronous Fifo And Implementation On Fpga

12

Figure 13: „wenable=1‟ when „full=1‟ condition is reached, results in „overflow=1‟

Figure 14:‟seven segment display‟ showing „data_out‟ from the FIFO.

V. CONCLUSION
The asynchronous FIFO is successfully implemented on FPGA. The FIFO is made parameterised and

also additional status flags like „underflow‟, „overflow‟, „near_empty‟ and „near_full‟ are included in the design

to make the design safer. The design turns out to be of high speed with maximum frequency146.864 MHz.

REFERENCES
 Shruti Sharma, “Implementation of an RTL synthesizable asynchronous FIFO for conveying data by

avoiding actual data movement via FIFO”

[2]. proposed in Computing, Communication and Networking Technologies (ICCCNT), 2015 6th IEEE

International Conference on 13-15 July 2015.

 Xinrui Zhang, Jian Wang, Yuan Wang, Dan Chen, Jinmei Lai, “BRAM-based Asysnchronous FIFO in

FPGA with Optimized Cycle Latency” proposed in Solid-State and

[4]. Integrated Circuit Technology (ICSICT), 2012 IEEE 11th International Conference on 29 Oct-1 Nov

2012.

 Yanjun Zhang, Chunli Yi and Jinqi

[6]. Wang, “Asynchronous FIFO Implementation Using FPGA”,

[7]. International Conference on Electronics and Optoelectronics, IEEE Conference Publications, 2011,

Volume 3.

 HaythamAshour, “Design, Simulation and Realisation of a parameterizable,

[9]. configurable and modular Asynchronous FIFO”, Science and Information Conference, IEEE Conference

Publications, 2015.

