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ABSTRACT: Temperature dependent thermal properties of tissue is an important factor to achieve realistic 

models in thermal treatments. Tissue temperature dependent thermal conductivity is used to model the Pennes’ 

bioheat transfer equation in skin with one relaxation time. Three different time-dependent surface heat flux, 

namely, continuous, periodic and ramp type are applied on skin surface without heat loss at the bottom. Laplace 

transform method is applied to solve the problem and the significant effect of variable conductivity parameter 1k  

is observed on the tissue temperature distribution. 
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I. INTRODUCTION 
The transfer of heat in skin is mainly a heat conduction process coupled to complicated physiological 

processes. The thermal properties of skin vary across different layers; even within the same layer. These properties 

of skin are influenced by temperature, damage, pressure, and age, etc. A variety of thermal methods have been 

developed and applied to the treatment of disease or injury involve either a raising or lowering of temperature in 

targeted skin area to kill or thermally denaturize necrotic cells. Pennes’ model [1] is widely used to model such 

problems due to its simplicity. Thermal wave model was proposed by Cattaneo [2] and Vernotte [3] to capture the 

effect of microstructural interaction in heat flux. Various studies have been done to cure disease involving skin 

tissue without affecting the surrounding healthy tissue. Xu et al. [4] and Rossmann et al. [5] reviewed the 

biothermomechanical behavior and temperature dependence of electrical and thermal properties of tissue 

respectively. Poor et al. [6] studied temperature response of skin tissue due to time-dependent surface heat fluxes. 

Later, Tzou [7-8] introduced dual-phase-lag (DPL) model of heat conduction. Askarizadeh et al. [9] 

utilized DPL model in treating the transient heat transfer problem in skin tissue. Liu et al. [10-12] employed the 

DPL model to analyze the heat transfer problem in hyperthermia treatment, skin and eliminated the inconsistence 

in theory discovered in the literature. Das et al. [13] estimated the breast tumor characteristics with known skin 

surface temperature by using finite volume method. Agrawal et al. [14] proposed a finite element model to study 

temperature distribution in skin and deep tissue of elliptical tapered shape human limb. In thermal ablation 

treatment. Kumar et al. [15] investigated the thermal behavior in living tissue using time fractional dual-phase-lag 

bioheat transfer (DPLBHT) model subjected to dirichlet boundary condition during thermal therapy. Shaoa et al. 

[16] developed a Radiofrequency ablation (RFA) mathematical model to study the influence of injected 

nanoparticals in irregularly shaped liver tumors.  

It is well established that physical property of engineering and bio-physical materials vary significantly 

with temperature. The temperature dependence of material properties like thermal conductivity k  and specific 

heat c  affect biothermomechanical behavior of various materials. Therefore, to achieve efficient solution of 

temperature change problems, the temperature dependence of material properties should be taken into account, 

which require additional modeling, experimentation and computational efforts.  A comprehensive work has been 

done by various researchers for variable thermal conductivity in continuum mechanics, notable among them are 

[17-28]. Li et al. [29-30] studied the transient responses for a half-space with variable thermal conductivity and 

diffusivity in the context of the generalized thermoelastic diffusion theory. In spite of all these studies no work has 

been done to investigate the effect of variable conductivity on Pennes’ bioheat transfer equation. In this work, the 

analytical solution of the thermal wave model of bioheat transfer with temperature dependent variable thermal 

conductivity is obtained. The results shows that the tissue thermal conductivity parameter 1k  affects the tissue 

temperature distribution. T tissue temperature, C  0T initial temperature of body, C  aT arterial blood 

temperature, C  q heat flux, 
2Wm  c specific heat of tissue, 

11  KJkg  bc specific heat of blood, 
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11  KJkg  k variable thermal conductivity of tissue, 
11  KWm  0k constant thermal conductivity of tissue 

1k variable conductivity parameter 0q incident heat flux amplitude (
2Wm ) 1q dimensionless incident heat flux 

amplitude  tissue density, 
3kgm  b blood mass density, 

3kgm  b blood perfusion rate, 
1s  mq heat 

source due to metabolic heat generation in the tissue, 
3Wm  t time, s  q  heat flux relaxation time, s  

tissue thermal diffusivity, 
12 sm  s Laplace domain parameter l bromwich contour integration line L tissue 

slab length, m  x coordinate variable, m  x dimensionless coordinate  dimensionless tissue temperature 

1 dimensionless heat flux relaxation time H Heaviside function  Dirac delta function  dimensionless heat 

flux frequency i dimensionless duration time of pulse train heat flux   

 

II.  FORMULATION OF THE PROBLEM 
A one dimensional finite length tissue is considered whose bottom boundary is insulated. Three different 

type heat flux, namely, instantaneous, periodic and pulse train are applied on skin surface. One dimensional 

Pennes’ bioheat equation is  
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 Equation (1) with the use of equation (2) and equation (3) yield, the following form of Pennes’ equation  
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 In case of thermal wave model  
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Initial conditions  

 0.=,0)(0,=,0)( xTxT t
 (7) 

 

Boundary conditions  
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For the theory of heat and mass transfer in living tissue one of the central issues is how to create good 

models that describe these transport phenomena. An important factor to achieve realistic models is the use of 

mathematical functions to describe the temperature dependence of thermal properties of tissue. 

A commonly used approach for modeling the temperature dependence of thermal and electrical properties for 

temperature below C100  is based on linear equations and employs constant temperature coefficient such as:  

 )(1=)( 10 TkkTk  . (9) 

 Considering the mapping (Kirchhoff’s transformation) [31] as  
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 After obtaining  , the tissue temperature T  can be obtained by solving equation (11) which gives  
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 Eq. (6) with the use of Eq. (9) and Eq. (10), yield the following equation in linear form  
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III. SOLUTION OF THE PROBLEM 
 Introducing the dimensionless variables and similarity criteria  
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 Using the non-dimensional variable and removing the dashes, equation (13) reduces to the following form  
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 with initial conditions  
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 and boundary conditions  
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 where )(tf  is a known function of dimensionless t  as follows, 

Case 1  
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 Case 2  

 ,=)( tietf 
 (19) 

 Case 3  
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 Applying Laplace transform technique, equation (15) becomes,  
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 In Laplace domain, boundary conditions are  
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 Solution of equation (21), by using the boundary conditions (23) is  
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 Inverse Laplace transform of ),( sx  can be obtained from the following Bromwich contour integration [32]  
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 Using the inversion theorem, the following inverse Laplace transform of equation (25) is obtained for  

Case 1  
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 Case 2  
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 Case 3 
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 Other constants are given in equation (32)  
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IV. NUMERICAL RESULTS AND DISCUSSION 
The following specified values of relevant parameters are considered similar to the parameters given in 

literature [33-34]. The thermal physical properties of skin tissue are 
31000= kgmb , 

31000= kgm , 

11

0 0.628=  KWmk , 
114187=  KJkgcb , 

114187=  KJkgc  , 
13101.87=  sb , 

33101.19=  Wmqm , CTa

37= , CT 37=0 , mL 0.05= , 
23

0 105=  Wmq , sq 16= .  

 

The study is done for limiting cases. 

Figure 1 depicts the tissue temperature response with different values of variable thermal conductivity parameter 

1k  for the case 1. It clearly shows that the value of 1k  significantly affecting the tissue temperature response. 

Temperature increases for .02<<0 t  and decreases for .04<<0.02 t  after that it becomes constant. 

Figure 2 depicts the tissue temperature response with different values of variable thermal conductivity parameter 

1k  for the case 2 i.e. periodic heat flux when 1= . It is noticed that as the value of 1k  increases amplitude of 
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temperature profile increases. 

Figure 3 depicts the tissue temperature response with different values of variable thermal conductivity parameter 

1k  for the case 3 i.e. pulse train heat flux.  

Figure 4 depicts the tissue temperature response with dimensionless distance for case 1 and it shows that 

temperature profile is affected by the parameter 1k . 

Figure 5 depicts the tissue temperature response subjected to periodic heat flux at three different depths under the 

skin surface when 1=  and .5=1k . It is noticed that oscillatory amplitude becomes low for a large depth 

from the heating skin.  

 

 

Figure  1: Temperature responses with time for the case 1 with different values of variable conductivity 1k  

 

Figure  2: Temperature responses with time for the case 2 with different values of variable conductivity 1k
 

 

 

Figure  3: Temperature responses with time for the case 3 with different values of variable conductivity 1k  
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Figure  4: Temperature responses with dimensionless distance for the case 1 with different values of variable 

conductivity 1k  

 

Figure  5: Temperature responses with time at different tissue depths for .5=1k
 

  

V. CONCLUSIONS 

The lack of information on temperature-dependent thermal properties prevents us from accurately 

predicting the temperature distribution of the target tissue undergoing thermotherapy. Therefore, it is necessary to 

consider temperature-dependent thermal properties to achieve realistic models of thermal therapies in order to 

generate valid results. In this study, thermal wave model of bioheat transfer equation is modeled with variable 

conductivity of tissue to achieve realistic model. The problem is solved by using the Laplace transform method 

and subjected to three different boundary conditions, instantaneous, periodic and pulse train. Tissue temperature is 

obtained for all the three cases and it is observed that tissue thermal behavior is significantly affected by the 

variable thermal conductivity parameter 1k .  
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