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ABSTRACT:- Let 1 0( )l

n nS    be secondary structure sequences, 
l

nS  satisfy the following recurrence 

1
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n
l l l l

n n k n k

k l

S S S S


  



   for 1n l   with 0 1 1 1l l l

lS S S     . In particular, when 0l  ,
0

n nS M , 

where nM are the Motzkin numbers. We evaluate Hankel determinant
0 ,det( )l

i j l i j nS    
 and 

1 0 ,det( )l

i j l i j nS     
. We show that 

1 1 0 ,( ) 1l l

n i j l i j nH S        for 0l  . We give another proof of 

1 0 ,det( )i j i j nM     . 
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I. INTRODUCTION 
The secondary structure is a subset of helical structure consistent with a planar graph. The tertiary 

structure is the non-planar folding. Secondary and tertiary structures determine the three-dimensional shape of 

RNA molecule,  hence determine the function of these important biological molecules [9]. Given a sequence 

( ) 0n na  , define its ( 1) ( 1)n n    Hankel determinant 0 ,det( )i j i j na    . Hankel determinants occur 

naturally in diverse areas of mathematics, we refer the readers to krattenthaler [7] for an excellent survey of 

determinant evaluations and [8] for a complement. We state some results needed for our study [6,10]. For a 

fixed integer 0l  , 1

l

nS   satisfy the following recurrence 

1
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n
l l l l

n n k n k

k l
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  , 

0 1 1 1l l l

lS S S     ,where 1 0( )l

n nS    are secondary structure sequences. The sequence ( ) 0n na   of 

positive numbers is log-convex if the sequence 1n na a   is increasing. The sequences 0( )l

n nS   are log-convex, 

for 1,2,3l   and 4 , see [4]. In particular, when 0l  , 
0

n nS M , where nM  are the Motzkin numbers. The 

Motzkin number sequence 1,1,2,4,9,21,51, , enumerates many diff erent combinatorial objects and has 

been the subject of several studies [1]. Hankel determinants of the Motzkin numbers have occurred in the 

literature [1,2,3,5]. We evaluate two families of Hankel determinants. 
1 0 ,det( )l l

n i j l i j nH S     , 

1 1

1 1 0 ,det( )l l

n i j l i j nH S 

      . In particular, when 0l  , 
0

1 0 ,det( )n i j i j nH M    . This determinant 

evaluation is already known. Cameron and Yip [3] evaluate this Hankel determinant by using combinational 

method. We give another proof of this determinant. 

 

II. THEOREM AND PROPOSITION 
A. Theorem 

1 1 0 ,( ) 1l l

n i j l i j nH S        for 0l  ,where 1

l

nS   satisfy the recurrence. 

B.     Proposition 
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1 0,5 (mod 6)

=det( ) 0 1, 4 (mod 6)

-1 2,3 (mod 6)
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III. PROOF 
All determinants in this paper will be evaluated by employing row, column operations and using the recursive 

relation of sequence. 

 

A. Proof of Theorem  
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1) Subtract the thi  column multiplied by 1

l

n iS    from the ( 1)thn  column for 1,2,3, 1i n   and 

subtract the nth column. Next, applying a similar procedure to the thn , ( 1)thn ,  , 2nd  columns by 

using recursion relation, we have 
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2) Perform row operations for the above determinant. For fixed 2,3, ,k n  , we subtract i th row multiplied 

by 
l l

k l i lS S  , for 1,2, , 1i k  , from the thk  row. 
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From the result above, we take 0l  . 
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Then we get 
0 0 0

1 1 0 1l

n nH H H S      . 
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3)Next let’s consider  
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By using the recursion relation, applying the similar procedure above then we have 
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In the general case, we can’t get the interesting results. Noting that 
0

1 1n nS M  , by using above results, 

employing row and column operations for the determinants and using the recursion relation, we get the 

proposition. 

 

B. Proof of Proposition 
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1)Subtract the thi  column multiplied by 1n iM    from the ( 1)thn  column for 1,2, , 1i k   and 

subtract the thn  column. Next, applying a similar procedure to the thn , ( 1)thn , ···, 2nd  columns by 

using the recursion relation, we have 
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2) Perform row operations for the above determinant. For fixed 1,2, ,k n  ,we subtract thi  row multiplied 

by 0k iM M , for 1,2, , 1i k  , from the thk  row, and 0 1M  . We have 
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3) Subtract the thi  column multiplied by 2n iM    from the nth column for 2, , 2i n   and subtract the 

( 1)thn column. Next, applying a similar procedure to the ( 1)thn , ···, 2nd columns by using the 

recursion relation, we have 

0 0 0 0 3
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4) For fixed 2,3, , 1k n  , we subtract thi  row multiplied by 0k iM M , for 1,2, , 1i k  , from 

the thk  row. we have 
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then we can obtain 
1 1

1 2n nH H   . This completes the proof of proposition. 

 

IV. FURTHERWORK 

We evaluate Hankel determinants
1 0 ,det( )l l

i j l i j l i j nS S        and
1 2 0 ,det( )l l

i j l i j l i j nS S        . Then, we 

prove the log-convexity by using a technique based on the Hankel determinants. 
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