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ABSTRACT: This paper presents visualization of the data set lying in a higher dimensional space using 

commute time embedding. However, commute time embedding involves computing spectral decomposition of the 

graph Laplacian matrix, which requires computational burden proportional to O(n³), which might not be 

suitable for large scale dataset. Recently, many methods have been proposed to reduce the computational 

burden. These methods, which usually involves sampling the affinity matrix of the graph, might be suffered from 

the distortion induced by computing spectral decomposition of the normalized graph Laplacian from the 

sampled affinity matrix. This paper proposes how to reduce the distortion by preserving the properties the 

normalized graph Laplacian matrix should be symmetric and positive semidefinite even after its approximation 

by sampling process. The performance of the proposed algorithm is analyzed by checking the embedding results 

on a patch graph in both geometric and topological ways. 
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I. INTRODUCTION 
Over last decades, there have been several different embedding algorithms developed for 

dimensionality reduction in manifold ways. They make it possible to visualize the dataset lying in a higher 

dimensional space by embedding them in a two or three dimensional space. This can be a meaningful clue for a 

desired output in the area of pattern recognition or machine learning, because it helps to imagine what they look 

like. When dataset lies on a linear subspace, PCA(principal component analysis) is most useful and optimal for 

embedding as well as dimensionality reduction in terms of maintaining maximum variance of  dataset. 

However, when dataset lies on a nonlinear space, PCA introduces severe error. The manifold learning 

algorithms replace PCA on a nonlinear space. Although there are lots of manifold learning algorithms, commute 

time embedding is known to be most suitable for dimensionality reduction.  

Basically, manifold learning algorithms usually use kernel-based methods to represent the data of 

nonlinear structure, because it is more clear in the feature space rather than in the original input space. In 

kernel-based methods, kernel matrix is defined when input data are mapped to the feature space using a map 

: X FF ® . Kernel matrix
n nG R , whose element ( , ) ( ), ( )ij i j i jG k x x x x    , can be represented in 

terms of an inner product between feature vectors. For example, ISOMAP [14], which is known to be the first 

manifold learning algorithm, computes the matrix whose elements are the geodesic distance between pairs of 

nodes. On the contrary, Laplacian eigenmap [2] and commute time embedding [11] employ graph Laplacian 

matrices as kernels. This scheme needs to compute the spectral decomposition of the kernel matrix, whose 

computational burden increases in the order of O(n³), where n is the size of dataset. It is hardly applicable when 

n is sufficiently large.  

Recent studies try to solve this problem by computing an approximate commute time without any 

spectral decomposition. it is approximated by using random projection based on Johnson-Lindenstrauss theorem 

[1] and Spielman-Teng algorithm [12]. It is widely known that this method can be applied to large scale spectral 

clustering. However, it is not appropriate to the visualization of dataset because it only approximates commute 

time between pairs of points rather than embedding coordinate of each point.  

In this work, a different approach is proposed to solve this problem by accelerating the computational 

time of spectral decomposition. Nyström method, proposed by Williams, et al. [15], is adopted in [7] to compute 

the kernel eigenfunctions approximately from the affinity matrix composed of randomly chosen samples. In 

spite of lots of researches on approximation of kernel matrices, there have been rarely known about 

approximation of the normalized graph Laplacian. The properties that a normalized graph Laplacian matrix is 

symmetric and positive semidefinite (SPSD) should be preserved even after its approximation. However, the 

method proposed by Choromanska, et al. [6], which approximates a normalized graph Laplacian based on the 

Nyström method, does not satisfy it any more. They try to create a submatrix by randomly sampling the 
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columns of graph Laplacian and normalizing it directly. However, it induces a severe error because the 

submatrix is no longer SPSD.  

This paper proposes a new method to approximate a normalized graph Laplacian, which reduces the 

approximation error significantly. The performance of the proposed method is analyzed by comparing the 

eigenvalues of the normalized graph Laplacian with the true ones as well as their embedding geometries, which 

are generated using the patch graph constructed using the overlapped samples of data. The patch graph, which is 

proposed by Taylor, et al. [13], effectively organizes the patches extracted from images or waveforms according 

to the graph-based metrics. Their recent studies on the patch graph and its embedding give convincing ideas of 

analyzing signals from the geometric point of view. It is known that commute time embedding results of 

periodic or quasi-periodic waveforms are represented as closed curves on the low dimensional Euclidean space, 

while those of aperiodic signals have the shape of open curves [10]. Based on this property, persistent homology 

is employed to determine the topological structures of the embedding geometries. 

The outline of the paper is as follows: The next section reviews construction of patch graphs and its 

commute time embedding. In section 3, the proposed method to approximate a normalized graph Laplacian is 

described in detail, from which approximate commute time embedding is constructed. we present in section 4 

experiments related to approximation of a normalized graph Laplacian and investigate its topological 

performance when it is applied to the commute time embedding. Finally in section 5, we conclude with 

directions for future research. 

 

II. BACKGROUND 
2.1Construction ofa Patch Graph 

Suppose that maximally overlapped patches ofsize p  samples are extracted around each time sample in the 

following way: 

2ˆ ,   1,2, ,pn
n

n

S n N   
x

x
x

(1) 

Where
nx is the mean-centered version of       , 1 , , 1

T p

n x n x n x n p     x R and 
2pS 

represents 2p  sphere. The patch ˆ
nx is obtained by normalizing with the magnitude, so that it may not be 

sensitive to changes in the local energy of the signal. In this work, a patch ˆ
nx is regarded as a vector on the 

2p  dimensional sphere embedded on the 1p  dimensional Euclidean space. Thus, the signal is reformatted 

as a patch set, with which the graph of patches is constructed.The weight along the edge connecting the nodes 

iv with jv , which are associated with ˆ
ix and ˆ

jx , respectively, is defined as follows:  

 

2 2ˆ ˆ 2
, : connected,

0 otherwise.

i j

i je v vw i j
 

 


x x

(2) 

Given a set of patches 11
ˆ ˆ, , N  x x and some measures of similarity between any pair of data  ,w i j , a 

graph can be constructed, where two vertices 
iv  and jv are connected with a weight  ,w i j  if 

iv is among 

the k-nearest neighbors of jv  or jv  is among the k-nearest neighbors of
iv [3]. Computing similarities 

between pairs of patches allows us to map the patches at the ambient space into some geometry at the 

embedding subspace [15].Given the distance matrix M , whose ,u v entries are the distance between pairs of 

nodes 
uv and

vv ,it is possible to embed all the nodes into the Euclidean space by computing a gram matrix 

associated with them.  

 

2.2Commute Time Embedding 

Given an affinity matrix
N NW R , the graph Laplacian matrix is defined as L D W  , where the 

degree matrix D is a diagonal matrix with entries
1

( , )
N

v
w u v

 . It is assumed that a patch graph is connected 

and undirected.Let 
TL U U  be the spectral decomposition of L , where U is the matrixcontaining all 

eigenvectors as columns and  the diagonal matrix with the eigenvalues
1, , N  . Denote by 

†L the 

Moore-Penrose pseudo-inverse of L , 
† † TL U U  , where  † † †

1 , , Ndiag     is defined as  
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†
1 0

0 .

i i

i
otherwise

 



 


(3) 

Then we have 

     †,
T

i j i jc i j vol e e L e e    (4) 

where  
,

,
u v

vol w u v and  0, ,0,1,0, ,0
T

ie      is defined as the 
thi  column of the identity matrix I . 

Hence,  ,c i j can be considered a Mahalanobis distance with a weighting matrix
†vol L  and  ,c i j of the 

above equation can be rephrased as  

     

   

†,

          .

T
T

i j i j

T

i j i j

c i j vol e e U U e e

z z z z

    

  

(5) 

Then, the commute time between 
iv and jv is given as ( , ) ( ) ( )T

i j i jc i j z z z z   , where  

 ,2 2 ,, ,i i i N Nz vol u u     (6) 

L can be normalized as
1/2 1/2

symL D LD  , which is called the normalized graph Laplacian. If 
symL  is used 

instead of L , LU U  becomes symL V V    where
1 2D    and 

1 2V D U . Thus, 
iz can be rephrased as 

 ,2 2 ,, ,i i i i N N iz vol v d v d     (7) 

 This allows us to interpret ( , )c i j  as the Euclidean distance between two nodes 
iz  and jz on 

the embedding subspace. For the dimensionality reduction, it is not needed to use all the components in the 

embedding defined by the above equation. Instead, only the first q components corresponding to the lower 

eigenvectors is used in the following way [13, 15]: 

, 1,2

2 1

, ,
i qi

i

i q i

vv
z vol

d d 





 
     
  
 

,  (8) 

where
k ’sare assumed to be sorted in the following way: 

1 20 2N         (9) 

 

2.3Persistent Homology 

Homology makes it possible to analyze the topological properties of objects given as a simplicial 

complex [9]. Specifically, the Betti numbers
n , the ranks of the 

thn  dimensional homology groups, are 

special types of topological invariants capturing the topological properties of many geometrical constructions. In 

fact, 
0 gives the number of connected components of a topological space, 

1 measures the number of one 

dimensional topological holes, and 
2 counts the number of two dimensional topological voids.  

The most obvious way to convert a collection of points in a metric space into a global object is to use 

the point cloud as the vertices of a simplicial complex whose edges are determined by proximity vertices within 

some specified distance  . Given an embedding map : R
mf M , we can determine the topological invariants 

of   R
mY f X , from which simplicial complex K is constructed. A simplicial complex is a set K in 

which any two simplices are either disjoint or they intersect in a common face, which is a simplex of smaller 

dimension.We need to compute a nested subsequence of complexes called a filtration of a complex
0 10 mK K K K    .It is assumed that 

nK K for n m .  

Persistent homology computes the homology groups along a filtration of complex and measures their 

topological importance by persistence intervals of their nontrivial homology classes [18].In this paper, persistent 

homology is represented using the persistence barcode, which displays graphically the set of persistence 

intervals as a collection of horizontal line segments. 
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III. DERIVING APPROXIMATE COMMUTE TIME EMBEDDING 
3.1Review of Nyström Method 

Symmetric, positive semidefinite kernel matrix G of size n n can be decomposed as
TG U U  , 

where  is a diagonal matrix whose diagonal elements are eigenvalues of G  and columns of U are 

orthogonal eigenvectors of G corresponding to the eigenvalues. Let C be the n c  matrix obtained by 

randomly sampling c columns of G uniformly without replacement and Ĝ be the c c matrix consisting of 

the intersection of these c columns with the corresponding c rows of G . Assume that the rows and columns 

of G are rearranged in the following way: 

ˆ ˆ
,           C=

T

r

G A G
G

A B A

   
    
   

(10)                                                      

Nyström method [7] approximates G as 
†ˆ T

kG CG C where ˆ
kG is adjusted so that its rank k be 1 k c 

and 
†ˆ
kG is the Moore Penrose inverse of ˆ

kG . It has been shown that G converges to G as c increases and the 

spectral decomposition of G is represented as
TG U U     . Here U and   are defined as follows: 

†

ˆ ˆ ˆ       
G G G

c n
U CU

n c
      (11)                                                      

Where ˆ ˆ ˆ
ˆ T

G G G
G U U  . It means that the eigenvalues   and the corresponding eigenvectors U of G  can be 

approximated to  andU , respectively. 

 

3.2Approximating Spectral Decomposition of the Normalized Graph Laplacian 

This section explains how to approximate spectral decomposition
1 2 1 2

symL D LD  , given an affinity 

matrixW . Let V  be the n c  matrix obtained by randomly sampling c  columns of an W uniformly 

without replacement and P  be the c c  matrix obtained by extracting the rows of the same indices as the 

sampled c  columns ofW . The rows and columns of W are rearranged as follows: 

,           V=
T

r

PP Q
W

QQ H

   
    

  
(12) 

 Choromanska, et al [6] approximate symL by computing
1 2 1 2ˆ

symL I c nD V     . Here, Î

is obtained by sampling the columns of the identity matrix I where  represents the index set  1 2, , , ci i i  

sampled uniformly, which is denoted as ˆ ( :  ,   )I I  .  And the degree matrices 
n nD R , 

c cR  are 

defined as follows: 

       
1 1

, , ,       , ,
c n

j j

D i i V i i i i V j i
 

    .       (13) 

They approximate the eigenvalues and eigenvectors of symL  using the spectral decomposition of

 ˆ  ,  : sym symL L  . The eigenvalues and eigenvectors of ˆ
symL deviate from those of symL and do not even 

satisfy the properties that the least eigenvalue be zero, since it is no longer SPSD.   

In this work, a different method to approximate the spectral decomposition of
symL is proposed, which preserves 

the properties that 
symL  be SPSD even though it is approximated. The procedure to approximate the spectral 

decomposition of 
symL usingNyström method, is described in detail as follows.  

Since 
rW  is SPSD, P is also SPSD. Firstly, P is normalized using its degree matrix 

PD to get

1 2 1 2ˆ
P PP D PD  , where    , ,P j

D i i P i j . However, Q should be normalized differently, as given in 

1 2 1 2ˆ
Q QQ D Q   , where    

1

, ,
c

Q

j

D i i Q i j


 and    
1

, ,
c

Q

j

c
i i P i j

n c 

 

 , since Q  is neither 

symmetric nor a square matrix. Finally, the eigenvalues and eigenvectors of symL  are approximated as 
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ˆ1
P

n

c
    , †

ˆ
ˆ

P

c
U VU

n
   , respectively,using the spectral decomposition of ˆ ˆ ˆ

ˆ T

P P P
P U U  . In other 

words, 
symL can be approximated as 

T

symL U U     , which is due to the fact that W and symL have the same 

eigenvectors and
WI   , where 

W and  are the eigenvalues of W and symL , respectively.Given the 

approximate eigenvalues and eigenvectors, commute time embedding can be implemented using (7) or (8). 

 

IV. EXPERIMENTS 
Patch sets associated with signals are constructed, where the size of patch is decided experimentally 

with 25p  samples. When the commute time embedding is performed on the patch set composed of N

patches, each vertex is mapped into an 1N  dimensional vector, as shown in (7), which causes severe burden 

and makes it hard to get a feel for what the data look like. In this work, dimensionality reduction is employed so 

that the data can be embedded on three dimensional space, as depicted in (8),where 3q  , because it is 

possible to visualize them on the embedding subspace if the patch set can be represented on two or three 

dimensional space. 

 

4.1 Characteristics of Commute Time Embedding 

Commute time embedding of some sinusoid is depicted in Fig. 2. The sinusoidal segment is composed 

of 700 samples, from which 676 patches are extracted from the sinusoidal signal, so that they may be maximally 

overlapped. 

 

 
Figure 1. Commute time embedding of a sinusoid signal from which the patch graph is constructed. 

(a) Sinusoidal waveform  (b) Its commute time embedding 
 

In this figure, patches of lower variance are encoded with blue color, while patches of higher variance 

with red color. Throughout this paper, lower variance means it is less than the median of the distribution of the 

variances over all patches in the patch set, while higher variance is larger than the median, following the idea of 

Tayler, et al. [15]. That is, patches of lower variance correspond to the segments that contain smooth or low 

frequency components and higher variance patches are associated with high frequencies. Commute time 

embedding shows that each patch is mapped densely to generate a smooth curve inherent to the characteristics 

of the signal, as depicted in Fig. 1. Indeed, the parametrization of the set of patches according to the spectral 

graph based metrics can concentrate statistically different patches, which would otherwise be scattered in the 

space of patch. This concentration property can be exploited so that the set of patches can generate on the 

embedding subspace a geometric structure intrinsic to the signal, from which patches are extracted.It is known 

that commute time embedding results of periodic or quasi-periodic waveforms are represented as closed curves 

on the low dimensional Euclidean space, while those of aperiodic signals have the shape of open curves. Thus, 

commute time embedding can be used as a tool for geometrization of dataset, where some periodic phenomena 

are transformed into the geometries composed of topological circles or higher dimensional holes in some space. 

 

4.2The Proposed Approximate Commute Time Embedding 

Fig. 2 shows approximate commute time embedding results of the patch graph same as that of Fig. 1(b), 

generated using Choromanska’s method and the proposed method. 
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Figure 2. Approximate commute time embedding. The left column: Choromanska’s method, the right 

column: our proposed method, Sampling rates: The first row (59.2%), the second row (88.7%). 
 

As mentioned in the above section, severe distortion occurs on the embedding results of 

Choromanska’s method, compared with those of our proposed method. Irregular scales at the embedding 

geometries, which are caused by the errors in approximating the eigenvalues of
symL , degrade the overall 

performance. Note that the phase can be reversed because the embedding map consists of eigenvectors, as given 

in (8). Table 1 shows the five smallest eigenvalues of the 
symL for the patch graph of the sinusoid. According to 

(9), the smallest eigenvalue of 
symL for the connected graph should be zero and the largest one be less than 2. 

Choromanska’s method, given in Table 2, does not satisfy the conditions. However, Table 3 shows that the 

approximate eigenvalues computed using our proposed method approach the true values as the number of 

samples increases as well as satisfy the condition given in (9). 

 

Table 1. The five smallest eigenvalues of symL  

 1  2  3  4  5  

values 0 0.01 0.012 0.040 0.045 

 

Table 2. The five smallest eigenvalues of symL , obtained using the Choromanska’s method 

#samples 1  2  3  4  5  

400 0.637 0.650 0.711 0.729 0.745 

600 0.119 0.131 0.136 0.166 0.175 

 

Table 3. The five smallest eigenvalues of symL , obtained using the proposed method 

#samples 1  2  3  4  5  

400 0.0 0.009 0.011 0.038 0.041 

600 0.0 0.010 0.011 0.040 0.046 

 

4.3Topological Analysis  

As mentioned in the previous section, commute time embedding results of periodic or quasi-periodic 

waveforms are represented as closed curves on the low dimensional Euclidean space. In this work, persistent 

homology is employed to determine the topological invariants of the simplicial complexes constructed by 

randomly sampling the commute time embedding of the patch graph [18].  

The embedding result of the sinusoid, depicted in Fig. 1, has the geometric structure composed of asingle 

topological circle.  
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Figure 3.The persistence barcodes corresponding to the geometries given in Fig. 1(b). 

(a) The 0-dimensional barcode  (b) The 1-dimensional barcode 
 

Fig. 3shows the persistence barcodes corresponding to the Rips complexes within the range of 

0 5  , constructed from the geometries of a sinusoid, as given in Fig. 1(b). The computation of Betti 

numbers
0  and 

1  is carried out by counting the long bars at the 0- and 1-dimensional persistence barcodes, 

respectively.It means that we can deduce the topological invariants 
0 1   and 

1 1   of the embedding 

geometry, given in Fig. 1(b), which can be interpreted as a connected component composed of a single circle. 

The persistence barcodes depicted in Fig. 4 represent the 0- and 1-dimensional persistent homology groups of 

the embedding geometries given in Fig.2(a) and (c). Fig. 4(a) shows a single short-lived 1-dimensional 

homology class, although one short-lived and one long-lived 1-dimensional homology classes are viewed in Fig. 

4(b), where short bars are regarded as a topological noise.It means that the embedding geometries generated 

with the Choromanska’s method get topologically correct only when sufficiently enough number of samples 

should be used to approximate the normalized graph Laplacian. 

 

 
Figure 4.The 0- and 1-dimensional persistence barcodes corresponding to the geometries given in   (a) 

Fig. 2(a),    (b) Fig. 2(c). 
 

However, the geometries generated with the proposed method, as shown on the right column of Fig. 2, 

have almost the same topological structures as the original ones given in Fig. 1(b). It can be easily found by 

checking Fig. 5, which shows the 0- and 1-dimensional persistent barcodes corresponding to the geometries of 

Fig. 2(b) and Fig.2(d). 
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Figure 5.The 0- and 1-dimensional persistence barcodes corresponding to the geometries given in (a) Fig. 

2(b), (b) Fig. 2(d). 
 

It is clear that the homology groups of the embedding geometry corresponding to the sinusoid is determined to 

be: 

 

 

 

0

1 ,





Z

Z

H K

H K
 (14) 

 

which can be easily obtained by counting the long-lived bars on the persistence barcodes calculated from the 

approximate geometries generated with the proposed method, independently of the sampling rate. 

 

V. CONCLUSION 
This work has explored approximation of commute time embedding to reduce the computational 

burden for large dataset. Our proposed method is based on Nyström sampling method to compute approximate 

commute time embedding. The strength of our method is that it preserves the properties that the normalized 

graph Laplacian matrix is SPSD even though it is approximated via sampling process. In addition, the 

embedding geometries generated by our method preserve the topological properties of the original objects. Thus, 

our method can be applied efficiently to dimensionality reduction, which is very effective for visualization, as 

well as spectral clustering or pattern classification of large dataset.  

As a future research, we would like to explore its application to pattern classification or manifold visualization 

in a geometric and topological way. 
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