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ABSTRACT: We propose the notions of explanation-radius and the local-comparability based on thedata 

distribution. The former measures the injective degree and the latter depicts the difference between the original 

data and the reduction data. Thereafter, through the experiments, the linear and nonlinear dimension-reduction 

are analyzed, included PCA (Principal Component Analysis), PP (Projection Pursuit) and LLE (Locally Linear 

Embedding), Laplacion Eigenmap. The experiments show the effectiveness and advantages of the researches. 
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I. INTRODUCTION 
High-dimensional data, such as aerospace remote sensing data, biological data, network dataand 

financial market transaction data, etc, the dealing with of which are faced with two problems: one is the problem 

of dimension disasterDonoho et al. (2000) (curses of dimension), and dimensional expansion brings great 

challenges to pattern recognition and rule discovery in high-dimensional data. Second, the growth of dimension 

brings "dimension gospelDonoho et al. (2000)",  and the new information in high-dimensional data can create 

new possibilities for solving problems. How to represent high-dimensional data in low-dimensional space, and 

thus discover its internal structure is one of the key issues in high-dimensional information processing research. 

The dimension reduction method has been widely used as an effective means to overcome the "dimensional 

disaster", and the corresponding research has been discussed in the literature . 

The existing dimension- reduction methods include the linear and nonlinear. The linear dimension- 

reduction method includes Principal Component Analysis (PCA) Tsuhan, et al． (2002), the Projection Pursuit 

(PP) Huber(1985) and so on, the main principle is to consider how to design the eigenvectors of linear models in 

high dimensional data spaceHe et al. (2002), but these methods don't work well for data with nonlinear 

structures. For the nonlinear characteristics of high-dimensional data sets, some nonlinear dimension- reduction 

methods such as Laplacian EigenmapBelkinet al. (2001), Locally Linear EmbeddingRoweiset al. (2000) have 

been developed in recent years.  

Although a lot of results have been achieved for specific problems in practice, such as classification, 

search, pattern recognition, etc., but it is still difficult to analyze intuitively the goodness of the dimension- 

reduction map and the quantitative relationship between the high-dimensional data of the observation space and 

the low-dimensional data after the dimension- reduction. On the one hand, this is not conducive to the in-depth 

exploration of the inherent laws of data, on the other hand, it is not conducive to the visual comparison of the 

dimension-reduction effects of different methods. 

In this paper, we propose the notions of explanation-radius and the local-comparability. The former 

measures the injective degree and the latter depicts the difference between the original data and the reduction 

data. And we analysis the common nonlinear dimension-reduction method such as Locally Linear Embedding, 

LaplacionEigenmap and linear dimension-reduction method such as Principal Component Analysis, Projection 

Pursuit by combining with examples. Furthermore,  some experiments results in several fields show the 

effectiveness and advantages of our research. 

 

II. EXPLANATION RADIUS AND LOCAL COMPARABILITY 

If NXXX ,,, 21  DR are independent and distributed in function )(xfm ，where )(xfm is the distribution 

density in m -dimensional manifold， that is, there exists one smooth mapping 

h such that )(yhx  ，
mRy .   D

N RxxxX  ,,,ˆ 21  is the corresponding sampling.  
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If )(xfm is approximate constant in a tiny neighborhood ))(,( ii xxV   of point ix , then the following 

formula is correct Levina and Bickel (2005)：  
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Definition１： Define 
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the m dimensional local similarity of the original data X and the 

dimensionality reduction data Y . 

Obviously, the value of ),( YXC tends to be small, which indicates that the distribution difference 

between the dimensionality reduction data point and the original data point tends to be small, and thus, the local 

similarity tends to be strong. Asa result obtained by the effective dimensionality reduction method should be 

localized. The value of similarity tends to be small. 

We know that the superiority of dimensionality reduction mapping g is closely related to the ability of 

dimensionality reduction data to the original data, and the size of the original data set )(1 yg 
corresponding to 

the dimensionality reduction data point y indicates the explanation ability to the original data, and describes the 

degree of unity of the dimensionality reduction mapping. If )(1 yg 
tends to be small, then the degree of 

homosexuality tends to be strong, as a result, the reversibility of the dimensionality reduction map tends to be 

stronger, that is to say, the explanation of the dimensionality reduction data to the original data is more accurate. 

On the contrary, if the reversibility of the dimensionality reduction mapping is weak, and the dimensionality 

reduction capability is stronger. But, it is impossible to address the quantitative analysis of the size of )(1 yg 
. 

In the following, we will conduct the indirect analysis by using its distribution.We have that the 
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in some extent since 

    m

iimiiim mVolumexfygxPyVyPyP    )()()(),()( )1(1  . 

  If the explanation-radius defined in the following definition 2 is smaller, the explanation is  more accurate and 

better , otherwise, the result is more worse. 

Definition 2： Define
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  the explanation-radius of m dimensionality reduction 

mapping about the date ix . 

Definition 3： Define  iJmedianJ  , the explanation-radius of m dimensionality reduction mapping about 

the date set X , where  iJmedian  is the median of dates. 

 Here m is actually the intrinsicdimension of the original data set, that is, the smallest number of 

explanatory variables. There are many ready-made methods for taking theintrinsic dimensionality, the authors 

could read Levina and Bickel (2005),K´egl (2002), Bruske and Sommer (1997). The focus is on the comparison 

of different methods in this paper, we consider the case of 2m  in the following experimental for using the 

uniform standards. 
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III. EXPERIMENTAL RESULT 
 In this section, we analyze several methods of dimensionality reduction by using explanation-radius 

and the local-comparability. Two of linear dimension-reductionPCA、PPand two of nonlinear dimension-

reduction LLE、Laplacian Eigenmapare analyzed. 

Example 1. The two samples 
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Figure 1 Original data and corresponding projection direction 

 
Methods PCA PP 

J 0.0011 0.0001 

C 0.0167 0.0002 

Table 1 Corresponding explanation-radius and the local-comparability 

 

From Table 1, We have that the method PP is more optimal than PCA about whether the explanation-radius or 

the local-comparability, and the results of Figure 1 also further verified this  conclusion. 

 

Example 2. An example of the number of 481 figures
*
. Each figure（ 120×128） is rotated  in the same 

background, so the intrinsic dimensionalityis 1. But for convenience, we let 2m . 

 

 
Figure 2 Dates of original figures 

                                                           
*
Http://vasc.ri.cmu.edu//idb/html/motion/hand/index.html 

http://vasc.ri.cmu.edu/idb/html/motion/hand/index.html
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Figure 3 Results of nonlinear dimensionality reduction（ 15 areas）  

 

Method LLE 
Laplacian 

Eigenmap 

J 2.3324 93.3590 

C 0.0003 0.2036 

Table 2 Corresponding explanation-radius and the local-comparability 

 

 From Table 2, We have that the method LLE is more optimal than Laplacian Eigenmap about whether 

the explanation-radius or the local-comparability, and the results of Figure 3 also further verified this conclusion. 

 

Example 3 .(Data of breast cancerwww.ics.uci.edu/~mlearn/NLRepository.html ]*Each group of data consists o

f 9 attribute values, describing a case of breast cancer. There are 98 groups in all cases. This is a sample data of 

9-dimensional space, divided into two categories (negative  with “●”, positive with  “*”).  

 

 
Figure 4 Results 
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Method PCA PP LLE 
Laplacian 

Eigenmap 

J 0.5204 0.5540 0.0023 0.0994 

C 0.4772 0.5310 0.0024 0.0466 

Table 3 Corresponding explanation-radius and the local-comparability 

 

 The results of Tables 1, 2, and 3 show that, in general, the PP method is superior to the PCA method an

d LLE method is superior to the Laplacian Eigenmap method, whether it is continuous data (Such as images and

 normal distribution sampling)or for discrete data(Such as breast cancer data). 

 

IV. CONCLUSIONS 
 In this paper, we introduce the concept of interpretation radius and local similarity by using the data 

distribution of the original data and dimensionality reduction data at each point.The common nonlinear 

dimensionality reduction method, local linear embedding method, Laplacian feature mapping method, linear 

dimensionality reduction method, principal component analysis method and projection pursuit method are 

analyzed with examples. 
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