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ABSTRACT:Global and robust stability conditions of controllers based on linear noise reduction 

disturbance observers (NR-DOB) are presented. These fundamental properties are analyzed by applying 

the Nyquist stability criteria of the overall scheme. Under this framework the stability and robustness of 

the control scheme are clearly exposed and established. The effectivity of the control strategy here 

proposed is shown through a series of illustrative examples in which systems with delays, non-minimum 

phase zeros or un-stable poles are considered. 
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I. INTRODUCTION 

Control schemes based on the Noise Reduction Disturbance Observer (NR-DOB) may be considered 

an improvement of controllers based on Disturbance Observers (DOB). Similarly, the DOB control 

configuration was developed from the internal model control scheme (IMC). In these three control strategies the 

performance and specifications are defined in terms of an internal model of the controlled process.  These 

control strategies aim at estimating and eliminating model uncertainties, perturbations, and measurement noise.   

The main characteristic of the IMC is the design of feedback controllers by accommodating in a single 

tuning parameter specification related to performance, robustness, and output disturbance rejection. On the other 

hand, DOB and NR-DOB schemes are based on two parameter configurations in which the performance and the 

disturbance rejection specifications are set considering different parameters, defining in this manner a two-

degrees of freedom (2-DOF) control framework.  

In [1-7] it is shown that by tuning the performance, robustness, and disturbance attenuation 

specifications under a 2-DOF framework presents advantages and more flexibility in the control design process.  

In the case of NR-DOB, the components of the 2-DOF configuration are a feedback controller and a 

sensor noise filter. The controller is designed based on theprocess model while the filter is designed to reduce 

the effects of sensor noise in the control system performance. In general DOB designs cannot reduce the effects 

of sensor noise without affecting control system performance. 

There are various reports on the effectivity of NR-DOB control designs in which a unity steady state 

gain filter is used to eliminate sensor noise. Nevertheless, due to the lack of a clear and transparent procedure 

noise filter is designed empirically.  

In [8] based on a state space analysis and in [9] under a polynomial approach almost global stability 

conditions for NR-DOB controllers are presented. Nevertheless, a clear design procedure for the noise rejection 

filter is not included.    

More recently a review of the NR-DOB including some guidelines for the noise filter design rendering 

almost global stability conditions is presented in [10]. Meanwhile, a robust stability analysis limited to the DOB 

control configuration is presented in [11].  

In references [12-14] application of DOB controllers to a set of systems are presented. Nevertheless, 

the results which include stability conditions are limited to the cases treated and no general conclusions can be 

established. 

A more comprehensive analysis of stability and robustness, limited to the DOB based controllers, is 

presented in [15]. In this article unstable, non-minimum-phase processes and time-delay systems are considered. 

Despite the progress and efforts reported in above mentioned works there is still lacking a clear and 

general procedure for the design of NR-DOB based controllers. As follows global stability and robustness 

conditions for the NR-DOB control configuration based on the Nyquist stability criteria are presented. The 

following results are expressed in the classical control frequency domain. Experience has proved that this 

framework is very well suited to the engineering context. As follows, it is also presented a clear and transparent 
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procedure for designing the noise rejection filter and its existence. In addition, requirements for process model 

to meet stability and robustness are also established. 

The article is presented as follows: in Section II, a resume of the NR-DOB is presented. In Section III, 

based on the Nyquist stability criteria global stability and robustness conditions are defined. In Section IV, 

several examples based on different structural mismatches between process and model are shown. Finally, in 

Section V, conclusions are presented. 

 

II. NOISE REDUCTION DISTURBANCE OBSERVER RESUME 

The block diagram of the noise reduction disturbance observer (NR-DOB) control system is depicted in Fig. 1 

where the shadowed section represents the actual NR-DOB. ( ), ( ), ( )R s s d s and ( )s are the reference signal, 

input perturbation, output perturbation and measurement noise, respectively. ( ), ( ), ( ),C s G s G s  and ( )F s  are 

the feedback controller, process, process model or reference model, and a unity steady state gain low-pass filter 

respectively. It is also assumed that at low frequency ( ) 0j   . Whereas at high frequency ( ) 0j   . This 

is a normal condition when ( )s  represents sensor noise. Also, it is assumed that ( ) ( ) 0d j j     at high 

frequency.  

 

 
 

Figure 1: Noise Reduction Disturbance Observer control system 

 

 

It is assumed that the filter ( )F s  is given by: 

 

1
( )

1
F s

n
s




 
(1) 

 

where n is chosen such that 1( ) ( )F s G s   is causal and 0  . The time constant  of ( )F s is tuned mainly to 

determine filtering conditions for sensor the noise ( )s  and exogenous perturbations ( )s and ( )d s .From 

equation (1) is clear that filter ( )F s  satisfy the following conditions: 

 



( ) 1, 0, ,

( ) 0, , .

F

F

B

B

F j

F j 

  

  

  
 

   


 

(2) 

 

The output of the closed-loop configuration of Fig. 1 is given by: 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).R dY s T s R s S s d s S s s S s s       (3) 
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where: 

   
( ) ( ) ( )

( ) ,
1 ( ) ( ) ( ) ( ) ( ) ( )

R

C s G s G s
T s

G s C s G s F s G s G s


   
 



  
 

 

 
( ) 1 ( )

( ) ,
( ) ( ) ( ) ( )

d

G s F s
S s

G s F s G s G s




 



 
 

 

 
( ) ( ) 1 ( )

( ) ,
( ) ( ) ( ) ( )

G s G s F s
S s

G s F s G s G s





 



 
 

 
( ) ( )

( ) .
( ) ( ) ( ) ( )

G s F s
S s

G s F s G s G s





  
 

(4) 

 

Assuming denominator    ( ) 1 ( ) ( ) ( ) ( ) ( ) ( )s G s C s G s F s G s G s     
 

     of equations (4) is Hurwitz and 

filter ( )F s  comply with the characteristics defined by equation (1), at low frequencies, that is, at 0, 
 FB   

the NR-DOB control system defined by equations (4) satisfy:  

 

 
 

   

 

 

 

( )
,

1

0,

1,

0.

R

d

C j G j
T j

C j G j

S j

S j

S j





 


 









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 







 

(5) 

 

On the other hand, at high frequencies, i.e. ,
FB      , filter ( )F s magnitude reduces to ( ) 0F j  ; 

therefore, equations (4) can be expressed as: 

 

 
   

   

 

 

   

,
1

1,

0,

.

R

d

C j G j
T j

C j G j

S j

S j

S j G j





 


 





 












 

(6) 

 

From equation (6) it is clear that with a suitable filter ( )F s  the effects of measurement noise ( )s  can be 

reduced without compromising tracking performance of reference signal ( )R s . Although input and output 

perturbations seem to have undesired effects at high frequency, e. g.   1dS j   and    S j G j   . As 

previously mentioned, these perturbations are assumed negligible at frequencies
FB  . That is, 

( ) ( ) 0d j j     when
FB  . Therefore, the NR-DOB control strategy is an appealing option to reduce the 

effects of measurement noise without compromising control system performance. 
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III. NR-DOB STABILITY AND ROBUSTNESS CONDITIONS 

 

The internal stability of the NR-DOB control system is defined by the following closed-loop relationships: 

 

 

   

( ) ( ) ( ) ( )( )
,

( ) 1 ( ) ( ) ( ) ( ) ( ) ( )

F s G s G s G sE s

R s G s C s G s F s G s G s

 


   
 

 

  
 

( ) ( ) ( )
0, 0, 0,

( ) ( ) ( )

E s E s E s

s d s s 
    

   
( ) ( ) ( )

,
( ) 1 ( ) ( ) ( ) ( ) ( ) ( )

U s G s C s

R s G s C s G s F s G s G s


   
 



  
 

 

 
( ) ( ) ( )

,
( ) ( ) ( ) ( ) ( ) ( )

U s U s F s

d s s G s F s G s G s


 

  
 
 

 

 

 
( ) 1 ( )( )

.
( ) ( ) ( ) ( ) ( )

G s F sU s

s G s F s G s G s



  
 



 
 

(7) 

 

 

Therefore, from equations (4) and (7) it is clear that the NR-DOB control system is globally and internally stable 

if polynomial    ( ) 1 ( ) ( ) ( ) ( ) ( ) ( )s G s C s G s F s G s G s     
 

   is stable. This implies that:  

 

Lemma 1: The NR-DOB control system of Figure 1 is globally and internally stable if: 

 

i. Controller ( )C s  stabilizes plant model ( )G s . That is, polynomial  ( ) 1 ( ) ( ) 0A s G s C s   is stable.  

ii. Filter ( )F s  stabilizes polynomial: 

 

 

 

( ) ( ) ( ) ( ) ( ) 0,

( )
( ) 1 ( ) 1 0,

( )

( ) 1 ( ) ( ) 0.

B s G s F s G s G s

G s
B s F s

G s

B s F s H s

    
 

  
     

  

  

 


 

 

That is, if ( )F s stabilizes transfer function: 

 

( ) ( ) ( ) ( )
( ) 1 1

( ) ( ) ( )

G s G s G s G s
H s

G s G s G s

    
        
   



  
. 

 

It is clear from Lemma 1 that once reference model ( )G s  has been selected design of controller ( )C s  is 

straightforward. That is, ( )C s  has to be designed to achieve adequate robustness and performance specifications 

for  system  RT j defined by  (5). 

 

The design of noise filter ( )F s  can be effectively carried out by noting that  the poles of function ( )H s  are  the 

poles of ( )G s  and the zeros of ( )G s . Thus, the second condition of Lemma 1 is satisfied if the Nyquist plot of 

( ) ( )F j H j   encircles Np times anticlockwise the critical point ( 1,0) . Where Np is the number of right half 
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plane poles (RHPPs) of ( )G s plus the number of right half plane zeros (RHPZs) of ( )G s . Further aspects need 

to be considered with regards to ( )H s  zeros. It is well known that RHPZs can prevent closed-loop stabilization 

of any transfer function. Therefore, it is also important to determine ( )H s  RHPZs. These can be obtained using 

the Nyquist stability criteria. That is, the number of RHPZs H
Z of ( )H s is given by: 

 

H H H
Z N P   

 

where: 

H
N : number of clockwise encirclements to the point (1,0) of the Nyquist plot of  

1( ) ( )G j G j   

H
P : number of RHPPs of ( )G s plus the number of RHPZs ( )G s . 

 

 

However, once model ( )G s  has been designed and because filter ( )F s  is a unity steady state gain low-pass 

filter, as described in equation (1), condition ii of Lemma 1reduces to design filter ( )F s bandwidth 
FB such 

that ( )F s does not impel the required encirclements to the point (-1,0) in anticlockwise sense of ( )H s  or  avoid, 

by reducing 
FB , encirclements in clockwise sense to the point (-1,0) of ( )H s .  

The former implies that if ( )H s is unstable with HP unstable poles and a Nyquist plot with no HP counter 

clockwise encirclements to point (-1,0), then there will not be a filter ( )F s  capable of stabilizing polynomial

( )B s . This infers that the stability of polynomial ( )B s depends mainly on the design of an appropriate internal 

model ( )G s  such that ( )H s  satisfies the necessary conditions for the existence of ( )F s . This supposes that, in 

general, controllers based on NR-DOB are in fact 3 DOF controllers depending on: Controller ( )C s , to satisfy 

performance specification, filter ( )F s  for noise filtering properties and process model ( )G s to guarantee internal 

stability. 

 

In Section IV, through different examples the design of internal model ( )G s is shown when process ( )G s  is 

unstable, non-minimum phase or with time delay. 

 

 

Nevertheless, if  order, relative degree and steady state gain of ( )G s  and ( )G s  coincide then these systems can 

be written as: 

1
1 1

1
1 1

... 1
( )

... 1

m m
m m

n s
n n

b s b s b s
G s k

a s a s a s







   


   
     and    

1
1 1

1
1 1

... 1
( )

... 1

m m
m m

n s
n n

b s b s b s
G s k

a s a s a s







   


   

  


  
. Then, it 

is clear that 
1

0
lim ( ) ( ) 1G j G j


 


 , hence 

0

( )
lim ( ) 1 0

( )

G j
H j

G j






 
   
 


. That is, ( )H s  has a zero at the 

origin. At high frequency 
1lim ( ) ( ) m n

m n

b a
G j G j M

b a
 


 




. It is clear that if 1M   then 

( )
lim ( ) 1 0

( )

G j
H j

G j

 
   
 







. That is, ( )H s  has a zero at infinity. Moreover, in the particular situation in 

which the corresponding parameters of the system and the model do not differ significantly it is possible to 

speculate that the Nyquist plot of ( )H s  would be contained in the right-hand plane 2

 .If additionally, ( )G s and 

( )G s are both stable and minimum phase  ( ) 1 ( ) ( ) 0B s F s H s    will be stable no matter filter ( )F s  

bandwidth
FB .  
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The robustness conditions of the NR-DOB control system can be defined in terms of the well-known concepts 

gain and phase margins. According to Lemma 1 the requirement for robustness based on the Nyquist stability 

criteria are: 

 

Lemma 2: The NR-DOB control system of Fig. 1 is robust if: 

 

i. ( )C j is designed such that ( ) ( )C j G j  have adequate gain and phase margins 

ii. ( )F j is designed such that ( ) ( )F j H j  have adequate gain and phase margins 

 

In the ideal and unrealistic case of perfect matching between the process ( )G s and the process model ( )G s , 

from equations (4) and (7),  the stability and robustness conditions can be summarized as follows: 

 

Corollary 1: When ( ) ( )G s G s , the NR-DOB control system will be stable and robust provided: 

 

i. Controller ( )C s stabilizes the plant model ( )G s  with appropriate gain and phase margins. 

ii. Filter ( )F s is stable, and 

iii. Process ( )G s is stable and minimum phase 

 

 

Example 1:Let a stable and minimum phase process 
2

2 10
( )

11 10

s
G s

s s




 
 and an unrealistic perfect model given 

by 
2

2 10
( )

11 10

s
G s

s s




 
 .  According to Corollary 1, polynomial ( )A s must be stable so controller ( )C j must 

stabilize model ( )G s . A simple and suitable I controller is given by 
1.39

( )C s
s

 , resulting in ( ) ( )C s G s with 

phase and gain margins of 50.6
o

MP   and MG  , respectively. It only remains to design filter ( )F s whose 

only requirement is to be stable, as indicated by Corollary 1, and to assure 
1( ) ( )F s G s   causal. Therefore, from 

equation (1) an appropriate filter is given by 
 

2

1
( )

0.01 1
F s

s



. 

 

 

To illustrate the stability and performance of the design responses to external signals 

( ) ( ), ( ) ( ), ( ) ( )R dT s R s S s d s S s s  and ( ) ( )S s s  are shown in Figure 2 assuming, for simplicity of analysis,

( ) ( ) ( ) ( )R s d s s s     unity step signals. From these responses is clear that the NR-DOB control system is 

globally and internally stable. 
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Figure 2: ( ), ( ), ( )R ds S s S sT  and ( )S s step responses. Example 1 

 

 

However, the important issue arises in the realistic event of mismatch between process ( )G s and process model 

( )G s . That is, existence of filter ( )F s and its requirements for stability and robustness depends mainly on the 

mismatch between process ( )G s and process model ( )G s . The most common mismatch between process and 

model is the so call sub parametrization occurring mainly when model ( )G s is simplified by neglecting high 

frequency modes of process ( )G s . Although it is normally assumed that at low frequency model and process 

match, uncertainty in steady state gain should also be considered. Also, it is important to elucidate if NR-DOB 

applies to processes including time delay, non-minimum phase zeros or unstable poles. 

 

In the following section NR-DOB control system is analysed assuming different kinds of mismatch between 

process ( )G s and model ( )G s . 

 

IV. NR-DOB CONTROL SYSTEM DESIGN EXAMPLES 

 

As mentioned in Section III, designing NR-DOB control systems that ensure robustness, globalstability, and 

performance when there are mismatches between the process and the process model can become challenging. 

Even more so when the process is unstable, no minimum phase or with time delay. In this section, the design of 

NR-DOB control systems is shown, based on the classical control frequency domain analysis and Lemmas 1 and 

2, assuming model/plant mismatch or for non-minimal phase, unstable or with time delays processes. 

 

 Nonminimum phase process 

Example 2:Let a stable non-minimum phase process 
100

( ) 0.1
2

s
G s

s

 



, and a sub parametrized model given 

by 
10

( )
2

G s
s




 . Despite the differences between ( )G s and ( )G s , in the low frequency range of

 0, 20 /rad sec , ( )G s is a good model of process ( )G s , as shown in Figure 3. 
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Figure 3:Bode diagrams of ( )G s and ( )G s . Example 2 

 

 

The first step for the design of a NR-DOB control system is, according to Lemmas 1 and 2, the design of a 

controller ( )C s stabilising model ( )G s with adequate phase and gain margins. A suitable PI controller is given 

by: 

 

 0.5 1
( )

s
C s

s


  

(8) 

 

In Figure 4, the Bode diagrams of ( ) ( )C s G s shows adequate phase and gain margins of 90
o

MP   and MG  , 

respectively, so conditions i of Lemmas 1 and 2 are satisfied. 

 

 

Figure 4:Bode diagrams and robustness margins of ( ) ( )C s G s . Example 2 

 

 

To comply with conditionsii of Lemmas 1 and 2, is necessary to calculate 
1( ) ( )G s G s  resulting in: 

 

 1( ) ( ) 0.01 1G s G s s     (9) 
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Since
1

0
lim ( ) ( ) 1G j G j


 


 , ( )H s will have a zero at zero. In fact, ( ) 0.01H s s  with no poles. Moreover, the 

Nyquist plot of ( )H s , Figure 5, encircles the critical point (-1,0) once clockwise so an unstable pole will be 

induce in polynomial ( )B s unless filter ( )F s is designed with sufficiently low bandwidth 
FB , such that its roll-

off avoids the clockwise encirclement to point (-1,0) of ( ) ( )F s H s . This must be done also assuring appropriate 

robust margins and 
1( ) ( )F s G s   causal. 

 

 
Figure 5: ( )H s Nyquist plot. Example 2 

 

A filter ( )F s  which satisfies conditions ii of Lemmas 1 and 2 is given by: 

 

 
2

1
( )

0.025 1
F s

s



 

(10) 

 

Bode diagrams and Nyquist plot of ( ) ( )F s H s ,in Figure 6, show no encirclements to the point (-1,0)  with phase 

and gain margins of MP   and 14 ' sMG dB , respectively; hence,  polynomial ( )B s is stable and robust and, 

consequently, the NR-DOB control system is also stable and robust. 

 

Finally, time responses of ( ) ( ), ( ) ( ), ( ) ( )T s R s S s d s S s sR d  and ( ) ( )S s s  , with ( ) ( ) ( ) ( )R s d s s s    all 

assumed unity step signals are shown in Figure 7.  

 

 
Figure 6:Bode diagrams and Nyquist plot of ( ) ( )F s H s . Example 2 
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Figure 7: ( ), ( ), ( )R ds S s S sT  and ( )S s step responses. Example 2 

 

To assess the robustness properties the plant is modified as 
  

80
( ) 0.125

2 0.1 1

s
G s

s s

 


 
; that is, assuming a 

variation of 20% in the non-minimum phase zero and an additional non-modelled pole at -10. The step 

responses shown in Figure 8 prove that the designed NR-DOB control system can maintain stability and 

performance despite process uncertainties, proving its robustness. 

 

 
Figure 8: ( ), ( ), ( )R ds S s S sT  and ( )S s step responses with modified plant. Example 2 

 

 

It is important to notice from Example 2 that process ( )G s can be non-minimum phase, contrary to the 

conditions reported in [9]. 
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 Unstable process 

Example 3:Let the unstable process 
2

4
( )

2
G s

s s

  

. To propose an unstable model ( )G s , trying to match 

the process, will result in
1( ) ( )G s G s with an exact or almost exact unstable cancellations leading to the non-

existence of a filter ( )F s capable of stabilizing polynomial ( )B s as required by condition ii of Lemma 1.  

Therefore, and based on condition ii of Lemma 1, to assure the appropriate number of anti-clock sense 

encirclements to the point (-1,0) by the Nyquist plot of ( )H s and existence of a stabilizer filter ( )F s , model 

( )G s should be assumed stable with negative gain such that
1( ) ( )G s G s  is minimum phase with a Nyquist plot 

located in 2

  rotating counter clockwise. Additionally, ( ) ( )G j G j  to assure sufficient high gain so the 

unstable pole of  
1( ) ( )G s G s  can be stabilized.  

A suitable model ( )G s complying with these conditions is given by: 

 

2

1
( )

3 2
G s

s s
 

 
  

(11) 

 

Similar to the two previous examples the first step, according to condition iof Lemmas 1and 2, is to design a 

stabilizing controller ( )C s for model ( )G s with adequate robustness margins. A controller complying with these 

requirements is given by: 

 

 0.5 1
( ) 1.8

s
C s

s


   

(12) 

 

Bode plot of ( ) ( )C s G s , in Figure 9, shows that condition iof Lemmas 1 and 2 are satisfied with phase and gain 

margins of 54
o

MP   and MG  , respectively. 

 

 

Figure 9:Bode Diagrams and robustness margins of ( ) ( )C s G s . Example 3 

 

The design of filter ( )F s requires to calculate 
1( ) ( )G s G s , resulting in: 

 

 

 
1

1
( ) ( ) 4

1

s
G s G s

s







  
(13) 
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Because 
1( ) ( )G s G s Nyquist plot encircles point (1,0) once in counter clockwise, Figure 10, ( )H s will be 

minimum phase; in fact, ( )H s results in: 

 

 

 

3 5( )
( ) 1

1( )

sG s
H s

sG s

 
     

 
  

(14) 

 

 

 

Figure 10:Nyquist plot of
1

( ) ( )C s G s
 . 

Example 3 

  

 

Figure 11:Nyquist plot of ( )H s . Example 3 

 

 

The Nyquist plot of ( )H s , Figure 11, shows one anti-clockwise encirclement to point (-1,0). Hence, filter ( )F s

must be designed with sufficient high bandwidth 
FB  such that the anti-clock wise encirclement to the point 

(1,0) is maintained by ( ) ( )F s H s . This must be done with adequate robust margins and assuring 
1( ) ( )F s G s 

causal. An appropriate filter ( )F s is given by: 

 

 
2

1
( )

0.05 1
F s

s



 

(15) 

 

Resulting in a stable and robust polynomial ( )B s  as shown in Figure 12 where theBode diagrams of ( ) ( )F s H s

show robust margins of 65.1
o

MP   and 14 ' sMG dB , respectively,  and the ( ) ( )F s H s  Nyquist plot keeps the 

anti-clockwise encirclement to the point (-1,0). Therefore, condition ii of Lemmas 1 and 2 are satisfied. 
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Figure 12:Bode Diagrams and Nyquist plot of ( ) ( )F s H s . Example 3 

 

Time responses of ( ) ( ), ( ) ( ), ( ) ( )T s R s S s d s S s sR d  and ( ) ( )S s s  , with ( ) ( ) ( ) ( )R s d s s s    all assumed 

unity step signals are shown in Figure 13.  

 

 
Figure 13: ( ), ( ), ( )R ds S s S sT  and ( )S s step responses. Example 3 

 

Similar to example 2 the plant is modified as 
  2

2
( )

2 0.1 1
G s

s s s


   
; that is, with a variation of 50% in 

the gain and a neglected stable pole at -10. The step responses with the modified plant, in Figure 14, prove the 

robustness properties of the design. 
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Figure 14: ( ), ( ), ( )R ds S s S sT  and ( )S s step responses with modified plant. Example 3 

 

Thanks to the transparency of classical control theory, Example 3 proves that it is possible to apply the NR-DOB 

to unstable processes assuring performance and robustness. However, and contrary to normal procedures, it is 

also proven that process model must not be designing trying to match the process. Instead, its design should aim 

to achieve stability. Further analysis indicates that ( )G s  over-parametrized with stable poles is recommended 

since this will generate a non-causal minimum phase 
1( ) ( )G s G s  which in turn will induce sufficient 

anticlockwise encirclements to point (-1,0) by ( )H s  so  1 ( ) 0H s  will be stable; remaining only the design 

of filter ( )F s with sufficient bandwidth 
FB and degree n . 

 

 Process with time delay 

 

Example 4:Let a stable minimum phase process with a time delay d ,
1

1 1 0

1

1 1 0

...
( )

...

m m

ds m

n s

n

s b s b s b
G s e k

s a s a s a



 





   


   
with m n . Because 

1( ) ( )F s G s  must be causal, ( )G s cannot be 

designed trying to match process ( )G s time delay; otherwise,  there will not be a filter ( )F s  capable of 

guaranteeing causality in 
1( ) ( )F s G s  , given that an ( )F s  of infinite degree will be required.  

On the other hand, assume model ( )G s stable and minimum phase in the form of 

1

1 1 0

1

1 1 0

...
( )

...

m m

m

n s

n

s b s b s b
G s k

s a s a s a









   


   

 





  


  
with m n  . If n n , 

1( ) ( )G s G s will be causal with relative degree 

 1Re_deg ( ) ( ) 0G s G s nm nm      , such that 
1lim ( ) ( ) 0G s G s






 , rendering a 

1( ) ( )G s G s Nyquist plot 

with magnitude tending to zero with infinite clockwise encirclements to the origin due to ( )G s time delay. This 

will induce infinite clockwise encirclements to point (-1,0) by  H j , so polynomial  ( ) 1 ( ) ( )B s F s H s 

will be unstable unless filter ( )F s bandwidth 
FB is chosen sufficiently small to avoid ( ) ( )F j H j  clockwise 

encirclements to (-1,0).  

In the case of n n  , 
1( ) ( )G s G s  will be non-causal with relative degree  1Re_deg ( ) ( ) 0G s G s nm nm     
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and 
1lim ( ) ( )G s G s






 which, similar to the previous case, due to process ( )G s time delay will induce 

infinite clockwise encirclements to the origin with magnitude tending to infinite, which in turn will induce 

infinite clockwise encirclements to point (-1,0) by  H j . Therefore, polynomial  ( ) 1 ( ) ( )B s F s H s  will 

be stable provided filter ( )F s not only with sufficiently small bandwidth 
FB  but with a degree 

 deg ( )F s nm nm   to generate sufficient  roll-off in ( ) ( )F s H s so high frequency clockwise encirclements 

to (-1,0) are avoided.  

Something similar occurs when  1Re_deg ( ) ( ) 0G s G s nm nm      , as this will induce infinite 

clockwiseencirclements to point (-1,0) with constant magnitude k
k

 by  H j  which will require, as the two 

previous cases, filter ( )F s bandwidth 
FB  sufficiently small to avoid ( ) ( )F j H j  clockwise encirclements to 

point (1,0). 

 

Based on the previous analysis, consider a process given by 
 

0.05

2

1
( )

2

sG s e
s




 and a process model 

  

1
( )

1.5 2.5
G s

s s


 
  such that 

  

 
1 0.05

2

1.5 2.5
( ) ( )

2

s
s s

G s G s e
s

 
 




  with relative degree 

 1Re_deg ( ) ( ) 0G s G s nm nm      . The Nyquist plot of 
1( ) ( )G s G s , Figure 15.a, shows the infinite 

clockwise encirclements with magnitude 1k
k
  to the origin, inducing infinite clockwise encirclements to 

point (-1,0) by  H j  as shown in Figure 15.b. 

 

Figure 15Nyquist plots of
1

( ) ( )G s G s
 and ( )H s . Example 4 

 

To avoid the clockwise encirclements to (-1,0) ( )F s bandwidth 
FB must be chosen sufficiently small with a 

degree such that 
1( ) ( )F s G s  is causal resulting in: 

 
3

1
( )

0.09 1
F s

s



 

(16) 

 

The resulting Bode diagrams and Nyquist plot of ( ) ( )F s H s are shown in Figure 16, where it is shown that the 

clockwise encirclements to point (-1,0) are avoided with phase and gain margins of MP   and 

14.01 ' sMG dB , respectively. Therefore, polynomial ( )B s is stable and robust according to condition ii of 

Lemmas 1 and 2. 
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To comply with conditions iof Lemmas 1 and 2, is necessary to design a stabilizer controller ( )C s for model 

( )G s with appropriate robust margins. A suitable PI controller is given by: 

 1.5
( ) 2.7

s
C s

s


  

(17) 

 

In Figure 17 the Bode diagrams of ( ) ( )C s G s shows adequate robust margins of 68.2
o

MP   and 'MG dB s . 

Hence, polynomial ( )A s is stable and robust. 

 
Figure 16:Bode Diagrams and Nyquist plot of ( ) ( )F s H s . Example 4 

 

 
Figure 17:Bode Diagrams and robust margins of ( ) ( )C s G s . Example 4 

 

Finally, time responses of ( ) ( ), ( ) ( ), ( ) ( )T s R s S s d s S s sR d  and ( ) ( )S s s  , with ( ) ( ) ( ) ( )R s d s s s    all 

assumed unity step signals are shown in Figure 18.   
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Figure 18: ( ), ( ), ( )R ds S s S sT  and ( )S s step responses. Example 4 

 

Similar to previous examples the plant is modified as 
   

0.1

2

1
( )

2 0.1 1

sG s e
s s


 

; that is, with a time delay 

increment of 100% and a neglected stable pole at -10. The step responses with the modified plant, in Figure 19, 

prove the robustness properties of the design. 

 

 
Figure 19: ( ), ( ), ( )R ds S s S sT  and ( )S s step responses with modified plant. Example 4 

 

 

V. CONCLUSION 

Based on the Nyquist stability criteria, global stability, and robustness conditions for linear Noise 

Reduction Disturbance Observer (NR-DOB) control systems are established. The approach here presented, 

thanks to its classical control nature, allows a transparent analysis and design in the frequency domain of NR-

DOB control systems assuring stability, robustness, and performance. Also, based on the conditions here 

presented, through several examples it was proved that contrary to previous reports, it is possible to design NR-

DOB control systems for unstable and non-minimum phase processes, including time delay. However, to 

achieve this, it was also found that process model should be designed with stability purposes rather than process 

matching. This is particularly critical in the case of unstable process or process including time delay. Hence, a 

control system based on the NR-DOB is in general a 3 DOF rather than a 2 DOF control strategy. 
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