β-Zero Sets and Their Properties in Topology

Govindappa NAVALAGI

Department of Mathematics, KIT Tiptur-572202, Karnataka, India.

ABSTRACT: In 1990, Malghan et al. have defined and studied the concepts of almost p-regular, pcompletely regular and almost p-completely regular spaces. In 1997 & 2004, Malghan et al. have defined and studied the concepts of almost s-completely regular spaces and s-completely regular spaces. In 2010, Navalagi introduced the concepts of pre-zero sets and co-pre-zero sets to characterize the concepts of pcompletely regular spaces and almost p-completely regular spaces. Recently, Navalagi introduced and studied the concepts of α -zero sets, co- α -zero sets, α -completely regular spaces and almost α -completely regular spaces. In this paper, we offer some new concepts of β -zero sets, co- β -zero sets, β -completely regular spaces and almost β -completely regular spaces. We also characterize their basic properties via β -zero sets.

KEYWORDS: β -open sets, α -continuity, pre-continuity, semicontinuity, β -continuity, zero sets, pre-zero sets, semi-zero sets, α -zero sets, β -zero sets, s-completely regularity and p-completely regularity.

Date of Submission: 01-09-2020

Date of Acceptance: 16-09-2020

I. INTRODUCTION

In the literature zero sets and co-zero sets due to Gilman and Jerison [13] were used to characterize the concepts like completely regular spaces and almost completely regular spaces by Singal, Arya and Mathur in topology, See [28 & 29]. In [17] and [18], Malghan et al have defined and studied the concepts of semi-zero sets and co-semi-zero sets in topology to characterize the properties of s-completely regular spaces and almost s-completely regular spaces using semicontinuous functions due to N.Levine [16]. In [23], Navalagi has defined and studied the concepts pre-zero sets and co-pre zero sets in topology by using precontinuous functions due to Mashhour et al [20] to characterize the properties of p-completely regular spaces and almost p-completely regular spaces due to Malghan et al [19]. Recently in [24], Navalagi introduced and studied the concepts of α -zero sets, co- α -zero sets, α -completely regular spaces and almost α -completely regular spaces. In this paper, we offer some new concepts of β -zero sets, co- β -zero sets, β -completely regular spaces and almost β -completely regular spaces.

II. PRELIMINARIES

Throughout this paper , we let (X, τ) and (Y, σ) be topological spaces (or simply X and Y be spaces) on which no separation axioms are assumed unless explicitly stated. Let A be a subset of a space X. Let Cl(A) and Int(A) denote the closure and the interior of subset A.

We need the following definitions and results in the sequel of the paper.

DEFINITION 2.1: A subset A of a space X is said to be :

- (i) preopen [20] if $A \subset Int Cl(A)$.
- (ii) semiopen [16] if $A \subset Cl Int(A)$.
- (iii) regular open [30] if A = Int Cl(A).
- (iv) α -open [25] if $A \subset Int Cl Int(A)$.
- (v) β -open[1] if $A \subset Cl$ Int Cl(A).
- (vi) δ -open set [31] if for each $x \in A$, there exists a regular open set G such that $x \in G \subset A$.

The complement of a preopen (resp. semiopen , regular open, α -open , β -open , δ -open) set of a space X is called preclosed [10] (resp. semiclosed [7], regular closed[30], α -closed[21], β -closed [2], δ -closed [31]) set. The family of all preopen (resp. semiopen , regular open , α -open , β -open and δ -open) sets of X is denoted by PO(X) (resp. SO(X), RO(X), α O(X), β O(X) and δ O(X)) and that of preclosed (resp. semiclosed , regular closed, α -closed , β -closed and δ -closed) sets of X is denoted by PF(X) (resp. SF(X) , RF(X) , α F(X) , β F(X) and δ F(X))

DEFINITION 2.2 : A function $f: X \rightarrow Y$ is called :

- (i) precontinuous [20] if the inverse image of each open set U of Y is preopen set in X.
- (ii) semicontinuous [16] if the inverse image of each open set U of Y is semiopen set in X.
- (iii) α -continuous [21] if the inverse image of each open set U of Y is α -open set in X.
- (iv) β -continuous [1] if the inverse image of each open set U of Y is β -open set in X.

DEFINITION 2.3 : A space X is said to be :

(i) p-completely regular [19] (resp. s-completely regular[17], α -completely regular [24]) if for each closed set F and each point $x \in (X \setminus F)$, there exists a precontinuous (resp.a semicontinuous , an α -continuous) function $f: X \rightarrow [0,1]$ such that f(x) = 0 and f(y) = 1 for each $y \in F$.

(ii) almost p-completely regular [19] (resp. almost s-completely regular[18] , almost α -completely regular [24]) if for each regular closed set F and each point $x \in (X \setminus F)$, there exists a precontinuous(resp. a semicontinuous, an α -continuous) function $f: X \rightarrow [0,1]$ such that f(x) = 0 and f(y) = 1 for each $y \in F$.

(iii) submaximal [8] if every dense subset of it is open (i.e. if $PO(X) = \tau$ [12]).

(iv) an extremally disconnected (E.D.) [32] if closure of each open set is open in it (i.e. if $A \in \tau$ for each $A \in RF(X)$ [15]).

(v) PS-space [5] if every preopen set of X is semiopen in X.

(vi) α -space [11] if every α -open set of X is open in X(i.e. $\tau = \alpha O(X)$).

(vii) β -regular space [4 &26] if each pair of a point and a closed set not containing the point can be separated by disjoint β -open sets.

It is well-known that a subset A of a space X is called a zero set [13] if there exists a continuous functions $f: X \to \mathbf{R}$ such that $A = \{ x \in X \mid f(x) = 0 \}$. The complement of a zero set of a space X is called a co-zero set of X.

REMARK 2.4 : If $f: X \rightarrow \mathbf{R}$ is continuous function may be denoted by Z(f). Thus, we write $Z(f) = \{x \in X \mid f(x) = 0\}$. Thus, Z(f) is a zero set of X. Therefore, it is clear that if A is a zero set in X then it can be expressed as A = Z(f), where f is continuous function.

DEFINITION 2.5: A subset A of a space X is said to be semi-zero set [17] of X if there exists a semicontinuous function $f: X \to \mathbf{R}$ such that $A = \{ x \in X | f(x) = 0 \}$.

DEFINITION 2.6: A subset A of a space X is said to be co-semizero set [17] of X if its complement is a semi-zero set.

REMARK 2.7: If $f: X \rightarrow \mathbf{R}$ is semicontinuous function may be denoted by SZ(f). Thus, we write SZ(f) = { $x \in X | f(x) = 0$ }. Thus, SZ(f) is a semi-zero set of X. Therefore, it is clear that if A is a semi-zero set in X then it can be expressed as A = SZ(f), where f is semicontinuous function.

DEFINITION 2.8: A subset A of a space X is said to be pre-zero set [23] of X if there exists a precontinuous function $f: X \to \mathbf{R}$ such that $A = \{x \in X | f(x) = 0\}$.

DEFINITION 2.9 : A subset A of a space X is said to be co-prezero set [23] of X if its complement is a prezero set.

REMARK 2.10: If $f: X \rightarrow \mathbf{R}$ is precontinuous function may be denoted by PZ(f). Thus, we write PZ(f) = { $x \in X | f(x) = 0$ }. Thus, PZ(f) is a pre-zero set of X. Therefore, it is clear that if A is a pre-zero set in X then it can be expressed as A = PZ(f), where f is precontinuous function.

DEFINITION 2.11: A subset A of a space X is said to be α -zero set [24] of X if there exists a α -continuous function f: X \rightarrow R such that A = { x \in X | f(x) = 0}.

DEFINITION 2.12: A subset A of a space X is said to be $co-\alpha$ -zero set [24] of X if its complement is a α -zero set.

REMARK 2.13 : If $f: X \rightarrow \mathbf{R}$ is α -continuous function may be denoted by $\alpha Z(f)$. Thus, we write $\alpha Z(f) = \{x \in X \mid f(x) = 0\}$. Thus, $\alpha Z(f)$ is a α -zero set of X. Therefore, it is clear that if A is a α -zero set in X then it can be expressed as $A = \alpha Z(f)$, where f is α -continuous function.

RESULT 2.14 [1]: Let X be a space and A and U be subsets of X,If $U \in \alpha O(X)$ and $A \in \beta O(X)$ then $A \cap U \in \beta O(U)$.

III. β-ZERO SETS

We define the following.

DEFINITION 3.1: A subset A of a space X is said to be β -zero set of X, if there exists a β -continuous function $f: X \rightarrow \mathbf{R}$ such that $A = \{ x \in X | f(x) = 0 \}$.

A subset A of a space X is said to be $co-\beta$ -zero set of X if its complement is β -zero set.

NOTE 3.2: Every zero set in X is a β -zero set in X.

REMARK 3.3: Let X be a space . If $f: X \to \mathbf{R}$ is a β -continuous function then the set $\{x \in X \mid f(x) = 0\}$ is a β -zero set. If $g: X \to \mathbf{R}$ is also a β -continuous function then $\{x \in X \mid g(x) = 0\}$ is also a β -zero set of X.

REMARK 3.4 : If $f: X \rightarrow \mathbf{R}$ is β -continuous function may be denoted by $\beta Z(f)$. Thus, we write $\beta Z(f) = \{x \in X | f(x) = 0 \}$. Thus, $\beta Z(f)$ is a β -zero set of X. Therefore, it is clear that if A is a β -zero set in X then it can be expressed as $A = \beta Z(f)$, where f is β -continuous function.

We recall the following.

LEMMA 3.5 [3]: If a space X be an E.D., and submaximal space , then $\tau = \beta O(X)$.

LEMMA 3.6 : If X is a E.D and submaximal space then a function $f: X \rightarrow Y$ is β -continuous then the inverse image of each member of a basis for Y is β -open set in X.

LEMMA 3.7 : Let X be a E.D and submaximal space . A function $f : X \to \mathbf{R}$ is β -continuous iff for each $b \in \mathbf{R}$ both the sets $f^{1}(b, \infty)$ and $f^{1}(-\infty, b)$ are β -open sets.

LEMMA 3.8 : Let X be an E.D. and submaximal space then the following are equivalent :

- (i) $f: X \rightarrow \mathbf{R}$ is β -continuous.
- (ii) For each $b \in \mathbf{R}$, $f^{-1}(-\infty, b)$ and $(-f)^{-1}(-\infty, -b)$ are β -open sets in X.
- (iii) For each $b \in \mathbf{R}$, $f^{-1}(b,\infty)$ and $(-f)^{-1}(-b,\infty)$ are β -open sets in X.

PROOF: Since (b, ∞) and $(-\infty, b)$ are subbasic open sets for the usual topology on R, thus the proof follows from Lemma –3.6 above.

We need the following.

LEMMA 3.9 : Let X be an E.D. and submaximal space .Let f , g : $X \rightarrow \mathbf{R}$ are β -continuous then,

- (i) $|f|^{\alpha}$ is β -continuous for each $\alpha \ge 0$.
- (ii) (af + bg) is β -continuous for each pair of reals a and b.
- (iii) $f \cdot g \text{ is } \beta$ -continuous.
- (iv) 1/f is β -continuous whenever $f \neq 0$ on X.

These results can be proved by using the proofs of Lemmas : 2.5, 2.6 and 2.7. See [9, p.84].

LEMMA 3.10 : If X is an E.D. and submaximal space and if $\{f_i : X \to \mathbf{R}\}_{i=1}^k$ is a finite family of β continuous functions, then the functions M, m : X $\to \mathbf{R}$ defined by M(x) =

Max $\{f_i(x)\}_{i=1}^k$ and $m(x) = Min \{f_i(x)\}_{i=1}^k$ are also β -continuous.

Proof is straight forward and hence omitted.

LEMMA 3.11 : In an E.D. and submaximal space X, the following statements hold for real valued functions :

- (i) If A is a β -zero set in X then there exists a β -continuous function $g: X \to \mathbf{R}$ such that $g(x) \ge 0$ for each $x \in X$ and $A = \beta Z(g)$.
- (ii) If A is a β -zero set in X then there is a β -continuous function $h: X \rightarrow [0,1]$ such that $A = \beta Z(h)$.
- (iii) Finite union of β -zero sets in X is a β -zero set in X.
- (iv) Finite intersection of β -zero sets in X is a β -zero set in X.
- (v) If $a \in R$ and $f: X \rightarrow \mathbf{R}$ is a β -continuous function then the sets A =
- $\{x \in X \mid f(x) \ge a\}$ and $B = \{x \in X \mid f(x) \le a\}$ are β -zero sets in X. (vi) If $a \in R$ and $f: X \to \mathbf{R}$ is a β -continuous function then the sets
- $A = \{ x \in X | f(x) < a \} \text{ and } B = \{ x \in X | f(x) > a \} \text{ are co-}\beta\text{-zero sets in } X.$

These results can be proved by using Lemma- 2.8 and 2.9 . See [27, p. 18].

Next, we give the following.

THEOREM 3.12 : If A and B are disjoint β -zero sets of an E.D. and submaximal space X, there exist disjoint co- β -zero sets U and V such that $A \subset U$ and $B \subset V$.

We, prove the following.

THEOREM 3.13 : In an E.D. and submaximal space X every β -zero (resp. co- β -zero) set is β -closed (resp. β -open) set.

PROOF: If A is β -zero set in X then by Lemma -3.11, we have $A = \beta Z(g)$, where $g : X \to \mathbf{R}$ is β -continuous and $g(x) \ge 0$ for all $x \in X$. Then, g(x) = 0 for all $x \in A$. Hence, $g^{-1}(\{0\}) = A$. Since $\{0\}$ is closed in \mathbf{R} and g is β -continuous, it follows that A is β -closed set in X. The second part is proved similarly.

Next, we give implications of these allied zero sets in the following and so we need following results :

REMARK 3.14: It is known that , $\tau \subset \alpha O(X) \subset SO(X) \subset \beta O(X)$ and $\tau \subset \alpha O(X) \subset PO(X) \subset \beta O(X)$.

THEOREM 3.15 [11]: In an α -space X , we have $\tau = \alpha O(X)$.

THEOREM 3.16 [5]: For a space X the following conditions are equivalent :

- (i) X is an E.D. space,
- (ii) $SO(X) \subset PO(X),$
- (iii) $SO(X) \subset \alpha O(X),$
- (iv) $\beta O(X) \subset PO(X).$

THEOREM 3.17 [5]: A space X is PS-space if it satisfies the following equivalent conditions :

(i) $PO(X) \subset SO(X)$,

- (ii) $\beta O(X) \subset SO(X)$,
- (iii) $PO(X) \subset \alpha O(X)$.

THEOREM 3.18 [14 & 22]]: In an E.D.-space and submaximal-space X , then $\tau = \alpha O(X) = SO(X) = PO(X) = \beta O(X)$.

IMPLICATION 3.23 : In view of Remark-2.4 ,2.7 , 2.10 , 2.13 , 3.4 and 3.14 , we have (i)every zero set $\rightarrow \alpha$ -zero set $\rightarrow semi-zero$ set $\rightarrow \beta$ -zero set ,

(ii) every zero set $\rightarrow \alpha$ -zero set $\rightarrow pre$ -zero set $\rightarrow \beta$ -zero set

IMPLICATION 3.24 : In view of Remark-2.4 ,2.13 and Theorem-3.15 , we have $Z(f) = \alpha Z(f)$.

IMPLICATION 3.25 : In view of Remark-2.7, 2.10, 2.13,3.4 and Theorem-3.16, we have (i)every semizero set \rightarrow pre-zero set, (i)every semi-zero set $\rightarrow \alpha$ -zero set, (i)every β -zero set \rightarrow pre-zero set.

IMPLICATION 3.26: In view of Remark-2.7, 2.10, 2.13, 3.4 and Theorem-3.17, we have

- (i) every pre-zero set \rightarrow semi-zero set,
- (ii) every β -zero set \rightarrow semi-zero set ,
- (iii) every pre-zero set $\rightarrow \alpha$ -zero set .

NOTE 3.37 :In view of In view of Remark-2.4 ,2.7 , 2.10 , 2.13 , 3.4 and Theorem-3.18 , we have $Z(f) = \alpha Z(f) = SZ(f) = PZ(f) = \beta Z(f)$.

IV. β -COMPLETE REGULARITY AND β -ZERO SETS

We, need the following.

DEFINITION 4.1 [1]: Let A be a subset of a space X. Then a subset V of a space X is said to be a β -neighbourhood of A if there exist a β -open set U of X such that $A \subset U \subset V$.

If $A = \{x\}$ for some $x \in X$ then V in the above definition is the neighbourhood of the point x.

We define the following.

DEFINITION 4.2: A space X is said to be β -completely regular if for each closed set F and each point $x \in (X \setminus F)$, there exists a β -continuous function $f: X \rightarrow [0,1]$ such that f(x) = 0 and f(y) = 1 for each $y \in F$.

Clearly, every completely regular space is β -completely regular , every α -completely regular space (resp. s-completely regular space , p-completely regular space) is β -completely regular and every β -completely regular space is β -regular space.

Next, we prove the following.

THEOREM 4.3: Every α -open subspace of an β -completely regular space is β -completely regular.

PROOF: Let X be an β -completely regular space and Y be an α -open subspace of X.Let F be a closed set in Y and $x \in Y$ such that $x \notin F$.Hence, $x \notin Cl_X(F)$.Since X is β -completely regular, there exists a β -continuous function $f:X \rightarrow [0,1]$ such that f(x) = 0 and f(y) = 1 for each $y \in Cl_X(F)$.Since the restriction of a α -continuous function to a α -open subspace is β -continuous in view of **Result 2.14**, it follows that $f/Y : Y \rightarrow [0,1]$ is β -continuous such that (f/Y)(x) = 0 and (f/Y)(y) = 1 for each $y \in F$. Hence Y is β -completely regular.

Next, we prove the following.

THEOREM 4.4: Every neighbourhood of a point in an E.D. and submaximal β -completely regular space X contains a β -zero set β -neighbourhood of the point.

PROOF: Let x_o be a point of an E.D. and submaximal β -completely regular space X and N be a neighbourhood of x_o . Then there exists a β -continuous function $f: X \rightarrow [0,1]$ such that $f(x_o) = 0$ and f(x) = 1 for each $x \in X \setminus N$. Then, $V = \{ x \in X \mid f(x) \ge \frac{1}{2} \}$, then V is a β -zero set β -neighbourhood of x_o such that $V \subset N$, as $x_o \in \{ x \in X \mid f(x) < \frac{1}{2} \}$ is β -open by above Lemma- 3.10 above.

Now, we need the following.

DEFINITION 4.5 [6]: A family σ of subsets of a space X is a net for X if each open set is the union of a family of elements of σ .

Now, we give the following.

THEOREM 4.6 : For an E.D and submaximal space X , the following statement are equivalent :

(i) X is β -completely regular space.

(ii) Every closed set A of X is the intersection of β -zero sets which are β -

neighbourhoods of A.

(iii) The family of all $co-\beta$ -zero sets of X is a net for the space X.

PROOF. (i) \Rightarrow (ii) : Let A be a closed set in X and $x \notin A$. Then from (i), there is a β -continuous function f_x : $X \rightarrow [0,1]$ such that $f_x(x) = 0$ and $f_x(A) = \{1\}$. Let $G = \{y \in X \mid f_x(y) \ge 1/3\}$ and $H_x = \{y \in X \mid f_x(y) < 1/3\}$. Then, $A \subset H_x \subset G_x$, where H_x is β -open and G_x is β -zero set which is β -neighbourhood of A. Further, $A = \bigcap_{x \notin A} G_x$

(ii) \Rightarrow (iii) : Let G be an open set of X. Then, X \ G is closed set in X. Let X \ G = $\bigcap \{B_{\lambda} \mid \lambda \in \wedge\}$, where B_{λ} is β -zero set β -neighbourhood of X \ G, for each $\lambda \in \wedge$. Hence, $G = \bigcup \{X \setminus B_{\lambda} \mid \lambda \in \wedge\}$, where X \ B_{λ} is a co- β -zero set for each $\lambda \in \wedge$. Hence, (iii) holds.

 $\begin{array}{l} (iii) \Rightarrow (i): Let \ A \ be \ a \ closed \ set \ and \ \ x_o \in \ X \setminus A \ . \ Then \ , \ from \ (iii), \ as \ X \setminus A \ is \ open \ there \ is \ a \ co-\beta-zero \ set \ U \ such that \ x_o \in U \subset X \setminus A. \ Let \ U = X \setminus \beta Z(g) \ , \ for \ some \ \beta-continuous \ function \ \ g: \ X \rightarrow [0,1]. \ As \ x_o \not \in \beta Z(g) \ , \ |\ g(x)| = r > 0 \ . \ If \ we \ define \ , \end{array}$

 $f: X \rightarrow [0,1]$ by $f(x) = Max\{0, 1-r^{-1}|g(x)|\}$ for some $x \in X$, then f is β -continuous

by Lemma -3.9 and 3.10 above and $f(x_o) = 0$ and f(x) = 1 for $x \in A$. Hence , X is β -completely regular space.

V. ALMOST β -COMPLETE REGULARITY AND β -ZERO SETS

In this section , we define and characterize the almost β -completely regular spaces using the concepts of β -zero sets and co- β -zero sets in the following .

DEFINITION 5.1: A space X is said to be almost β -completely regular if for each regular closed set F and each point $x \in (X \setminus F)$, there exists a β -continuous function $f: X \rightarrow [0,1]$ such that f(x) = 0 and f(y) = 1 for each $y \in F$.

We, prove the following.

THEOREM 5.2: A space X is almost β -completely regular iff for each δ -closed set F and a point $x \in (X \setminus F)$, there is a β -continuous function $f: X \rightarrow [0,1]$ such that f(x) = 0 and $f(F) = \{1\}$.

PROOF: Let X be almost β -completely regular space and let A be a δ -closed set not containing a point x. Then there exists an open set G containing x such that Int $Cl(G) \cap A = \emptyset$. Now, (X-Int Cl(G)) is a regular closed set not containing x. Since X is almost β -completely regular, there exists a β -continuous function $f: X \rightarrow [0,1]$ such that f(x) = 0 and $f(X-Int Cl(G)) = \{1\}$. Since $A \subset (X-Int Cl(G))$, it follows that $f(A) = \{1\}$.

Converse follows immediately since every regular closed set is δ -closed.

THEOREM 5.3 : For an E.D. and submaximal space X the following are equivalent :

(i) X is almost β -completely regular space.

(ii) Every δ -closed subset A of X is expressible as the intersection of some β -zero sets which are β -neighbourhood of A.

(iii) Every δ -closed subset A of X is identical with the intersection of all β -zero sets which are β -neighbourhoods of A.

(iv) Every δ -open subset of X containing a point contains a co- β -zero set containing that point.

PROOF. (i) \Rightarrow (ii) : Let X be an almost β -completely regular space. Let A be a δ -closed set and $x \notin A$. Then there exists a β -continuous function f_x on X into [0,1] such that $f_x(x) = 0$ and $f_x(A) = \{1\}$ by Theorem – 5.2. Let $G_x = \{y \in X \mid f_x(y) \ge 2/3\}$ for every $x \notin A$; G_x is β -neighbourhood of A. Lastly, $A = \bigcap_{x \notin A} G_x$: We have $A \subset G_x$, for each $x \notin A$, which implies that $A \subset \bigcap_{x \notin A} G_x$. Further, we claim that $\bigcap_{x \notin A} G_x \subset A$: Let $z \notin A$. This implies that there is a β -continuous function $f_z : X \rightarrow [0,1]$ such that $f_z(z) = 0$ and $f_z(A) = \{1\}$. Also, $G_z = \{y \in X \mid f_z(y) \ge 2/3\}$. Now, $f_z(z) = 0 < 2/3$. Therefore, $z \notin G_z$. This implies that $z \notin \bigcap_{x \notin A} G_x \subset A$. Hence, $A = \bigcap_{x \notin A} G_x$. Therefore, (i) \Rightarrow (ii) is true.

(ii) \Rightarrow (iii) : Let us suppose that (ii) holds. Let $A = \cap \{G_{\lambda} \mid \lambda \in \wedge\}$, where G_{λ} is a β -zero set which is β -neighbourhood of A for each $\lambda \in \wedge$. Let ρ be the family of all β -zero sets which are β -neighbourhoods of A. Therefore, $\{G_{\lambda} \mid \lambda \in \wedge\} \subset \rho$. Therefore, $\bigcap_{B \in \rho} B \subset \bigcap_{\lambda \in \wedge} G_{\lambda \Rightarrow} \bigcap_{B \in \rho} B \subset A$. Next, we prove that $A \subset \bigcap_{B \in \rho} B$: Now, B is a β -zero set which is β -neighbourhood of A for each $B \in \rho$ which implies that $A \subset \bigcap_{B \in \rho} B$. Therefore, $A = \bigcap_{B \in \rho} B$. Thus, (iii) holds.

(iii) \Rightarrow (iv) : Suppose (iii) holds.Let G be a δ -open set and $x \in G$. Then, $X \setminus G$ is δ -closed set and $x \notin X \setminus G$. This implies that $X \setminus G = \bigcap_{\lambda \in} A B_{\lambda}$ where $\{B_{\lambda} \mid \lambda \in A\}$ is family of all β -zero sets which are β -neighbourhoods of $X \setminus G$. Now, $x \notin X \setminus G \Rightarrow x \notin B_{\lambda o}$ for some $\lambda_o \in A$, which implies that $x \in X \setminus B_{\lambda o}$. Also, we have $X \setminus G = \bigcap_{\lambda \in} A B_{\lambda} \Rightarrow G = X \setminus \bigcap_{\lambda \in} A B_{\lambda} = \bigcup_{\lambda \in} A(X \setminus B_{\lambda})$. Therefore, $(X \setminus B_{\lambda o}) \subset \bigcap_{\lambda \in} A (X \setminus B_{\lambda}) = G$. Therefore, $x \in X \setminus B_{\lambda o} \subset G$. Since $B_{\lambda o}$ is β -zero set, $X \setminus B_{\lambda o}$ is a co- β -zero set. Therefore, (iv) holds.

(iv) \Rightarrow (i) : Suppose (iv) holds. Now, to prove that X is almost β -completely regular space : Let A be a δ -closed set and $x_o \notin A$. Then X\A is a δ -open set containing x_o . Then by (iv), there exists a co- β -zero set U such that $x_o \in U \subset X \setminus A$. Thus, X\U is a β -zero set . Therefore, there exists a β -continuous function $f : X \rightarrow [0,1]$ such that X\U = $\beta Z(f)$. Hence, X\U = $\beta Z(f) = \{x \in X \mid f(x) = 0\}$. As $x_o \in U$, it follows that $f(x_o) \neq 0$. Hence, $|f(x_o)| = r > 0$. Now, we define $g : X \rightarrow [0,1]$ by g(y) Min $\{1, \frac{1}{r} \mid f(y) \mid \}$, for each $y \in X$. Then g is β -continuous function. Also, $g(x_o) = 1$ and g(z) = 0, for each $z \in A$. Let h = 1/g. As X is E.D. & submaximal, by Lemma- 3.11, $h : X \rightarrow [0,1]$ is β -continuous such that $h(x_o) = 0$ and $h(a) = \{1\}$. Hence, X

REFERENCES

- [2]. M.E.Abd El-Monsef, R.A.Mahmoud and E.R.Lashin, β-closure and β- interior, Journal Fac.Ed.Ain Shams Univ., 10(1986), 235-245.
- [3]. M.E.Abd El-Monsef and A.M.Kozae, On extremally disconnectedness ,ro-equivalence and properties of some maximal topologies, Proc.4th Conference Oper. Res.Math. Method., (Alex Univ. 1988).
- [4]. M.E.Abd El-Monsef, A.N.Giaisa and R.A.Mahmoud, β-regular spaces, Proc.Math.Phys. Soc. Egypt,no.60(1985),47-52.
- [5]. T.Aho and T.Nieminen, Spaces in which preopen subsets are semiopen, Ricerche Mat.43(1994), 45-59.
- [6]. A.V.Arkhangel'ski and V.I.Ponomerov, Fundamentals of General Topology, Hindustan Publishing Company, Delhi (1988).
- [7]. N.Biswas, On characterizations of semicontinuous functions, Atti. Accad. Naz.Lincei. Rend.Cl.Sci.Fis . Mat. Natur. (8) 48(1970), 399-400.
- [8]. N.Bourbaki, General Topology, Addison-Wesley, Mass (1966).

completely regular. Hence the theorem.

- [9]. James Dugundji, General Topology, Allyan & Bacon Company (1966).
- [10]. S.N.El-Deeb, I.A.Hasanein, A.S.Mashhour and T.Noiri, On p-reguar spaces, Bull. Math. R.S.Roumanie, N.S., 27(75) (1983), pp. 311-315.
- [11]. Giovanni Lo Faro, On strongly α-irresolute mappings, Indian J.Pure Appl.Math., 18(1) (Feb-1987), 146-151.
- [12]. M.Ganster, Preopen sets and Resolvable spaces, Kyungpook Math. J., 27(2) (1987), pp.134-143.
- [13]. L.Gillman and M.Jerison, Rings of continuous functions, D.Van Nostrand Company. Inc.Princeton, New Jersey (1960).
- [14]. D.S.Jankovic, On locally irreducible spaces, Ann.Soc. Sci.Bruxelles Ser.I (97) (1983) ,36-41.
- [15]. D.S.Jankovic, A note on mappings of Extremally Disconnected space, Acta Math. Hungar., 46(1-2)(1985),83-92.
- [16]. N.Levine, Semiopen sets and semicontinuous mappings in topology, Amer. Math. Monthly, 70 (1963), pp. 36-41.
- [17]. S.R.Malghan, S.S.Benchalli and Govindappa Navalagi, s-completely regular spaces, Journal Tripura Math.Soc., 6(2004), pp.67-74.
- [18]. S.R.Malghan, S.S.Benchalli and Govindappa Navalagi, Almost s-completely regular spaces, Jour. of Indian Math.Soc., Vol. 64, Nos.1-4 (1997), pp.85-95.
- [19]. S.R.Malghan and G.B.Navalagi, Almost p-regular, p-completely regular and almost p-completely regular spaces, Bull. Math.R.S.Roumanie N.S., 32(82), No. 4 (1990), pp. 317-326.
- [20]. A.S.Mashhour, M.E.Abd El-Monsef and S.N.El-Deeb, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), pp. 42-52.
- [21]. A.S.Mashhour, I.A.Hasanein and S.N.El-Deeb, On α-continuous and α-open mapping, Acta Math.Hungar., 41(1983),213-218.

- [22]. A.A.Nasef and T.Noiri, Strong forms of faint continuity, Mem.Fac.Sci. Kochi Univ.Ser.A.Math., 19(1998), 21-28.
- [23]. Govindappa Navalagi , Pre-zero sets and their properties , International Journal of General Topology , Vol.3 ,Nos.1-2 (Jan-Dec. 2010),37-43.
- [24]. Govindappa Navalagi, α -zero sets and their properties in topology, To appear in WJERT, Vol.6, Issue 5 (Sept-2020).
- [25]. O.Njastad, On some classes of Nearly open set, Pacific J.Math., 15 (1965),961-970.
- [26]. T.Noiri, Weak and strong forms of β -irresolute functions, Acta Math.Hungar., 99(4) (2003), 325-328.
- [27]. A.R.Pears, Dimension theory of general spaces, Cambridge Univ. Press. (1975).
- [28]. M.K.Singal and S.P.Arya , Almost normal and Almost completely regular spaces, Glasnik Mat., 5(25) (1970) , pp. 141-152.
- [29]. M.K. Singal and Asha Mathur, A note on almost completely regular spaces, Glasnik Mat., 6(26)(1971), pp. 345-350.
- [30]. M.H.Stone ,Applications of theory of Boolean rings to general topological spaces, Trans. Amer.Math. Soc., 41(1937), 375-381.
- [31]. N.V.Velicko, H-closed spaces, Mat.Sb., 70(112)(1966),98-121.
- [32]. S.Willard , General Topology , Addison-Wesley, Mass(1970).

Govindappa NAVALAGI. "β-Zero Sets and Their Properties in Topology." *International Journal of Engineering Research And Development*, vol. 16(9), 2020, pp 20-27.