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ABSTRACT:  Civil structures are susceptible to damages over their service lives due to aging, environmental 

loading, fatigue and excessive response.Such deterioration significantly affects the performance and safety of 

structure. In this study, the measured structure vibration signals were decomposed by Fast Fourier Transform 

(FFT), Continuous Wavelet Transform (CWT) and Wavelet Packet Transform (WPT) to extract the sensitive 

features of the structural response, and to form one-dimensional or two-dimensional feature 

patterns.Correlation pattern recognition was used to perform pattern-matching for damage detection.To 

demonstrate the validity and accuracy of the method, experimental study was conducted on a small-scale three-

story building. The results showed that the features of the signal for different damage scenarios can be uniquely 

identified by these transformations, and correlation algorithm can then be used to identify the most probable 

damage scenario. 
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I. INTRODUCTION 

Recently, signal-based damage detection methods have received many attentions.These methods 

involve two main processes: (1) feature extraction and selection, and (2) pattern recognition.Feature extraction 

and selection is the process of identifying and selecting damage-sensitive features derived from the measured 

dynamic response, to quantify the damage state of the structure (Sohn et al. 2003).This process often involves 

fusing and condensing the large amount of available data from multiple sensors into a much smaller data set that 

can be better analyzed in a statistical manner.Also, various forms of data normalization are employed in the 

process in an effort to separate changes in the measured response caused by varying operational and 

environmental condition from changes caused by damage.  

Signal-based methods examine changes in the features derived directly from the measured time 

histories or their corresponding spectra through proper signal processing methods and algorithms to detect 

damage.Based on different signal processing techniques for feature extraction, these methods are classified into 

time-domain methods, frequency-domain methods, and time-frequency (or time-scale)-domain methods.Time-

domain methods use linear and nonlinear functions of time histories to extract the signal features.Examples of 

this category are Auto-Regressive (AR) model, Auto-Regressive Moving Average (ARMA) model, Auto-

Regressive with eXogenous input (ARX) model and Extended Kalman Filter (EKF).  Frequency-domain 

methods use Fourier analysis and cepstrum (the inverse Fourier transform of the logarithm of the Fourier spectra 

magnitude squared) analysis to extract features in a given time window.Examples of this category are Frequency 

Response Functions (FRFs), frequency spectra, cross power spectra, power spectra, and power spectral 

density.Time-frequency domain methods employ Wigner-Ville distribution and wavelet analysis to extract the 

signal features. Examples of this category are spectrogram, continuous wavelet transform coefficients, wavelet 

packet energies and wavelet entropy. As an enhancement for feature extraction, selection and classification, 

pattern recognition techniques are deeply integrated into signal-based damage detection.Staszewski (2000) and 

Farrar et al. (2001) presented the detailed descriptions of feature extraction, selection and analysis in the context 

of statistical pattern recognition.  Some cases of successful application of the procedure for damage detection 

can be found in Sohn et al. (2000, 2001), Trendafilova (2001), Posenato et al. (2008) and Fang et al. (2005). 

Signal-based methods have received considerable attentions from the civil, aerospace, and mechanical 

communities because they are particularly more effective for structures with complicated nonlinear behavior and 

the incomplete, incoherent, and noise-contaminated measurements of structural response (Adeli and Jiang 

2006).They are also more cost effective and suitable for online structural monitoring. 

Time-domain methods use linear and nonlinear functions of time histories to extract features.Sohn et al. 

(2000) used an auto-regressive (AR) model to fit the measured time history on a structure.Sohn and Farrar 

(2001) proposed a two-stage time history prediction model, combining auto-regressive (AR) model and an 

autoregressive with exogenous inputs (ARX) model. Sohn et al. (2002) developed a unique combination of the 
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AR-ARX model, auto-associative neural network, and statistical pattern recognition techniques for damage 

classification explicitly taking the environmental and operational variations of the system in the consideration.   

Frequency-domain methods analyze any stationary event localized in time domain.They use Fourier 

analysis, cepstrum (the inverse Fourier transform of the logarithm of the Fourier spectra magnitude squared) 

analysis, spectral analysis, frequency response technique, etc to extract features in a given time window.Tang et 

al. (1991) quantitatively diagnosed gear-wear through cepstrum analysis of gear noise signals.Lee and Kim 

(2007) used the frequency analysis to detect and localize damage.A signal anomaly index (SAI) which 

quantified the change of frequency response was developed as damage feature.Fasel et al. (2005) used a 

frequency domain auto-regressive model with exogenous inputs (ARX) to detect joint damage in steel moment-

resisting frame structures.   

In contrast to the frequency-domain methods, the time-frequency (or scale) methods can be used to 

analyze any non-stationary event localized in time domain. Hou et al. (2000) presented the great potential of 

wavelet analysis for singularity extraction in the signals, and the similar work can also be found on Hera and 

Hou (2004), Ovanesova and Suarez (2004) and Melhem and Kim (2003). Kim and Kim (2005) used the ratio of 

the incident wave toward and the reflected wave from the damage as index to assess the damage size. The ratio 

was estimated by the continuous wavelet transform of the measured signal and the ridge analysis.In the time-

frequency plane of the continuous wavelet transform, the ridge was traced to compare the magnitude of the 

incident wave and the magnitude of the reflected wave from the damage.Sun and Chang (2004) also derived two 

damage indicators from the WPT component energies.The acceleration signals of a structure excited by a pulse 

load were decomposed into wavelet packet components.Ding et al. (2008) developed a procedure for damage 

alarming of frame structures based on energy variations of structural dynamic responses decomposed by wavelet 

packet transform.   

 

II. Experimental Test 

A three-story steel structure was experimentally constructed. As shown in Figure 1, the structure was 

36 inches tall and consisted of 3 floors (steel slabs) and 30 columns (steel flat bars).  Each floor was supported 

on ten columns.  The steel was cold rolled steel.  The clear height for each story was 12 inches. 

 

 
Figure 1: Test three-story steel structure 

 

For easy removal of the columns from the structure and easy replacement of the columns for different 

damage scenario simulation, bolts were used to connect the steel slab and the steel flat bar.To make the rigid 

connection between the steel slab and the steel flat column, four pieces of steel angles (¼ ×1 ¼ ×1 ¼; length: 10 

inches) were welded on the two faces of the short edges of the floor plates; and two pieces of steel angles (¼ ×1 
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¼ ×1 ¼; length: 10 inches) were welded on the top face and on the short edges of the foundation slab.  A total of 

fourteen pieces of steel angles were used.  The columns were connected to the angles vertical legs using four 

bolts (1/4; Grade: 5).To prevent rotation and drift, the foundation slab was fixed to the ground by using hydrocal 

plaster and also two steel pipes 

To apply a consistent impulse force on the structure, a steel ball with a diameter of 1.75 inches was 

used. The steel ball was magnetically adhered to the top of a frame.It was tied by a 20.5 inches chain to this 

frame so that when the magnet was turned off, the ball dropped 20.5 inches traveling on a circular path to its 

lowest position, where it hit the third-floor slab and then bounced off the structure to create an impulse force on 

the structure.   

The accelerometer used in the experimental test was MicroStrain, Inc.’s +/-2g G-Link.  It has an 

integral tri-axial accelerometer built onto the board.The full-scale range is approximately +/-2g. G-Link is a 

complete wireless measurement system that transmits data on a continuous basis for a fixed period of time.In 

addition, G-Link has the capability to datalog sensor or voltage data to onboard nonvolatile memory. 

 

III. Damage Pattern Database 

A 3-D FE model of the structure was constructed by ANSYS, as shown in Figure 2.The element type 

for floors and columns was shell63 and beam4, respectively.  In total, there were 126 elements and 142 nodes in 

the model.The fully constrained boundary condition and rigid connection between floor and column were also 

applied to the model.  Transient dynamic analysis as detailed described in section 4.2, was carried out to 

determine the dynamic response of the structure under a step impulse force.The time-step was 0.000488 

(1/2048).  

 

 
Figure 2: 3-D FE model 

 

Various damage cases were introduced by symmetrically removing columns at different locations, 

which simulated the failure of one or more columns in the structure.64 damage cases including the baseline 

condition were designed to represent possible structural damage conditions.  In this study, the numerical 

dynamic responses of the structure under the 64 damage cases were simulated by removing corresponding 

columns from the 3-D FE model of the structure.The resulting 64 sets of normalized FFT magnitude vectors and 

64 sets of CWT coefficient matrices formed the damage feature patterns in the database. 

The acceleration signal was also decomposed by WPT using db6 wavelet function.The wavelet packet 

decomposition level was set to 12 which resulted in a total of 4096 wavelet packet components after 



Wavelet Transformation Analysis for Damage Detection on a Three-Story Building 

4 

decomposition.The energy variation𝑉𝑗
𝑖  for each component was calculated.Such a set of energy variation vectors 

formed a one-dimensional pattern which presented a unique condition under different damage case.  Each 

energy vector in a pattern was also normalized with respect to the square root of sum of squares of each one in 

the pattern.   

Same as FFT and CWT pattern database construction, the dynamic response of the structure under the 

64 damage cases were numerically simulated by removing the corresponding columns from the 3-D FE model.  

All of the 64 sets of the simulated acceleration response by ANSYS were transformed by WPT into energy 

variation vectors.The resulting 64 sets of WPT energy variation vectors formed the damage feature patterns in 

the database. 

 

IV. Case Studies and Pattern Matching 

Twenty-eight experimental damage cases, as listed in Table 1 were chosen to test the proposed damage 

detection procedure and the associated patterns and pattern-matching algorithms.The acceleration response of 

the structure with each damage case was measured after application of the impulse using the impulse applicator.  

These acceleration signals were then de-noised and transformed by FFT and CWT.As examples of the test 

results, Figure 3 shows the FFT and CWT pattern-matching results for damage case 0-0-20 by using 

correlation.The highest correlation value indicates the most similar pattern in the database which indicates the 

most probable damage level and location for the unknown case.   

 

Table 1:Experimental test cases 

Single Damage Location Double DamageLocations Triple DamageLocations 

0-0-20 0-0-60 0-20-20 20-40-0 20-20-20 40-40-40 

20-0-0 0-60-0 20-0-20 40-20-0 20-20-40 40-60-20 

0-20-0 60-0-0 20-20-0 40-0-20 20-40-20  

0-0-40  40-40-0 0-20-40 20-60-20  

0-40-0  0-40-40 0-40-20 40-20-20  

40-0-0  40-0-40  40-40-20  
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Figure3:  Correlation matching for damage case 0-0-20, FFT & CWT pattern matching 

 

All of the experimental test results indicate that both FFT and CWT patterns can preserve the damage 

information in term of level and location.However, CWT can be more efficient to detect the damage, especially 

in terms of location when the output signal is from more than one sensor.There are a number of wavelet 

functions that can be used as the mother wavelet for CWT feature extraction.The choice of wavelet function will 

affect the computing time and pattern-matching resolution.For demonstration purpose, some widely used 

wavelet functions were chosen as mother wavelet for CWT- based pattern extraction. Then correlation was used 

to perform pattern-matching to detect the selected three experimental damage cases: 0-0-20, 20-20-0, and 20-20-

40.The successful detection results for all the three experimental damage cases by using different wavelet 

functions indicated that all of the selected wavelet functions could be used as mother wavelet for CWT-based 

sensitive feature extraction.  The matching resolution based on each wavelet function was calculated as the 

difference between the two highest correlation values divided by the highest correlation value. It shows that 

Haar, Daubechies, Symlets and Gaussian wavelets have the best performance. It is also found that Haar, 

Daubechies and Gaussian wavelets take less computing time.In contrast, Meyr and Dmey wavelets take much 

longer computing time.     

Six experimental damage cases: 0-0-20, 0-0-40, 0-20-0, 20-20-0, 0-20-20, and 20-20-20 were selected 

to demonstrate the validity and accuracy of WPT method.The results show that WPT-based energy variation 

vectors can best preserve the dynamic response features of a structure under damage with low level and few 

locations.And when increasing the level of damage and the number of damage location, the detection result will 

be overestimated (see Figure 4 to Figure 6).In order to overcome this drawback, increasing the number of 

sensors and employing an iterative detection process can be explored as a recommended future research work.    

 

 

 

CWT Pattern Matching
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Figure4: Correlation matching for damage case 0-0-20, WPT pattern matching 

 

 
Figure5: Correlation matching for damage case 0-0-40, WPT pattern matching 

 

 

WPT Pattern Matching
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WPT Pattern Matching
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Figure6: Correlation matching for damage case 20-20-20, WPT pattern matching 

 

V. Conclusion 

The structure under a specific damage scenario, in terms of location, level and type, has a unique 

signature and shows a unique pattern in its dynamic response to an excitation.Fourier and Wavelet transforms 

provide means to extract and preserve the dynamic response features of a structure under various damage 

conditions.Different damage scenarios can be presented by the features extracted using these transformations.  

Since FFT preserves the frequency features of the signal, while CWT preserves its frequency as well as its time-

sensitive features, CWT pattern results in a higher pattern-matching resolution than FFT pattern.Comparing 

dynamic response pattern of a damaged structure with a wide range of numerically-generated damage cases 

stored in a database can serve as a tool to detect the closest damage case in terms of its existence, severity and 

location.   

This study has also shown that WPT-based energy variation vectors can best preserve the dynamic 

response features of a structure under damage with low level and few locations.Increasing the level of damage 

and the number of damage locations will result in a wrong detection.Increasing the number of sensors 

(accelerometers) and employing an iterative process may address this issue and is recommended as a future 

research work in this field.     

The method is particularly effective for large-scale structures due to their complicated nonlinear 

behavior and the incomplete, incoherent, and noise-contaminated measurements of structural response.Signal-

based damage detection has shown great potential in the experimental studies.It should be noted that a structure 

may experience nonlinear deformations in a severe event; but during detection process, the input, here an 

impulse, excites the structure within its linear range.This is true for the numerical excitation used for 

reconstruction of the damage pattern database after a severe event. 
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