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Abstract In this article, the characterization of the Bayes risk of the shape parameter of Pareto type — |
distribution using informative priors namely Exponential, Inverted Gamma distribution under different loss
functions such as Squared Error Loss Function (SELF), Quadratic Loss Function (QLF) and Precautionary
Loss Function (PLF) are studied by using data, as per the result, it is found that the Bayes risk is minimum
under SELF the QLF and PLF using Exponential prior the Inverted gamma prior
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l. INTRODUCTION

The Pareto probability distribution is a simple model for non- negative data with positively Skewed
distribution. This distribution was introduced by Wilfredo Pareto (1848-1923) especially for wealth distribution
of the population of a city within a given area. The use of the Pareto distribution as model to analyses stock
prize and instability in business and economic, field of bio medical science, risk factor in insurance company,
migration of population, survival time in quadratic system, Geophysical phenomena in society, reliability and
life testing. Sankudey and Sudhansu A.Maiti (2012), have studied the Bayes estimators of Rayleigh parameter
and its associated risk based on extended Jeffrey’s prior under the assumptions of both symmetric and
asymmetric loss function. R.K.Radha,(2015), studied the Bayesian analysis of exponential distribution using
informative prior. Gaurav Shukla, Umesh Chandra and Vinod kumar (2020), derived and examined the
expression for risk function under three different loss function. It is remarkable that the development of
appropriate Bayesian inference procure has been very limited. Bayesian inference in the Pareto type |
distribution for the special case in which the scale parameter is known. In this study the characterization of
Bayes risk using exponential prior and inverted gamma prior different loss function such as SELF,QLF and PLF
is to described.

The probability density function (pdf) of Pareto type — | distribution is defined as
[*]
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Where t is a random variable, 0 is the shape parameter and @ is the scale parameter, which is known.
The moments of Pareto type —I distribution, were given by
0
Mean,  E(t) = eaT1 0>1
fa?
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Variance, V(t) =

1. METHODOLOGY
2.1 Maximum Likelihood Estimation of Pareto Type | Distribution

Let t{, 3, ..... ¢, be asetof ‘n’ random variables from Pareto Type I distribution with Parameters B and o
having the probability density function defined in (1), then the likelihood function,

L =12 f(t; 0, 6) (2.1.1)

16



Characterization of Bayes Risk under Different Loss Functions using Informative Priors

6
S, 2
i=1 ¢,0+1

L = gnenbloga ,—(0+1) Yt ilogt;

dlogL
;‘Z = g +nloga- ),1—q logt;
Using the Maximization Likelihood Principle, we get the estimated value of 0 as
A n _logt;
6= [Ee0h ogq]
and @ = ml?;l(;‘z
In case of frequency distribution
-1
~ n _flogt;
6 = [W —log a] (2.1.2)

Where N= ), f

2.2 Bayesian Estimation and Bayes Risk using Informative Prior

Bayesian estimation is an estimation of an unknown parameter @ that minimizes the expected loss for

all observations x of X. The Bayes approach is an average case analysis by taking the average risk of an
estimator for all the parameters involved in the distribution under study. Suppose we take the prior probability

distribution 7T, on the parameter space @ then the average risk is defined as
R.(0) = Eq,[L(6,0)]
and the Bayes risk for a prior 7T is the minimum that the average risk can achieve

R, = inj;[Rn(a)]

2.3 Bayes estimation and Bayes risk using Informative Prior (Exponential prior)
The posterior pdf of exponential prior:

Assuming that 8 has informative prior as exponential prior which takes the following form
1 0
g(0) = ze //1;0,/1 >0
The posterior pdf of exponential prior is defined as

_ L(t1,t2,. 0ty )g(0)
h(@/t) = Jy” L(t1,t2,metn)g(8)dO

9n€_(9 +l)p%e_6//1
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Consider,
® on,—@+Dp L -0/ 00 _ (® gn,—6p L, P/
J, 6" Poe” /2dd = [ O"ePeP e /2d0

_ f Bne—ﬁp—e/lle—p/ldg
0 A

e P n+1

1 (p+1//1)n+1

-~The posterior pdf of exponential prior is

(p + 1/A)n-%l

T ey

h(g/tly tz, ey tn) =

2.3. Bayes Estimation and Bayes Risk using Informative Prior under different Loss Function
2.3.1. Bayes Estimation under Squared Error Loss Function

The SELF is defined as L(H, é) = (§ — 9) 2
The Bayes estimator under squared error loss function is
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Oserr = E(0) = fo 0 h(6/ty,ty,....., t,)d6
n+1 1
. +1 on —-0(p+ /1)
= fo o b //1) - do
vn+1
- The Bayes Estimator Squared Error Loss Function is
is
) +1
Ospr = E(6) == (2.3.1)

T
pt+y

2.3.2 Bayes Risk under Squared Error Loss Function
The Bayes risk R(B, 9) under SELF is defined as the expected loss under SELF

() R(6,8) = E[L(8,0)] = (8 —6)" = [E(0) — 0]

2
[ n+1 _ 9]
(e +1/2)
1 2 2 _ 20 (n+1)
(p+1/l)z n*+1+2n)+6 (P+1/,1)}

2.3.3 Bayes Estimation under Quadratic Loss Function
The Quadratic Loss Function is defined as

~ 2 ~ 2
~ 0-0 0
1e.6) = (5) =(1-3)
Consider the risk function R(H, 9) to estimate the parameter 6 under quadratic loss function

where, R(6,0) = E (1- g)z

2
= [ (1—%) h(8/ty, ty, ..., t,)dO

A~ _ E(l/g)
QQLF = E(l—/gz) (2.3.2)

Where,

E (%) = [ (%) h(8/ty, ty, ..., t,)dO
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R(6,0) =

(p+1/g)n+1 © an-1,-6(p+1/;)
=W‘f0 0 e p 1 d9
1\ _ (p+1)
E(5)=
Also,

E(5) = 7 () nC®/x)ae
=i () —(pj,%)l one?(P+/1)gg

(p+1//‘1)n(p+1/a) Vn+1
Vn+1 (p+1 /A)”“

2
_ (')
- n(n-1)
-~ The Bayes Estimator under Quadratic Loss Function is

Oorr = 1 (23.3)
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2.3.4 Bayes risk under the Quadratic Loss Function
The Bayes risk R(B, 9) under Quadratic Loss Function defined as the expected loss under QLF,

R(0.8) = E[1(0,0)] = (52) = (1- )
Where 8 = (n- 1)
(» x) )
R(6,6) = 1—@7_;%)

R(ee)_1+[” r 2

G| "2
- 1+ gy 20

Therefore,
n?+1-2n—2n6 (p +%)+9 (p —i%)]}

Rour(6,0) =1+ {g(p})[ o(v+)

2.3.5 Bayes Estimation under Precautionary Loss Function
The Precautionary Loss Function is defined as

9-6 02
s 09) = (5) = (1-9)
Consider the risk function R(H, 67) to estimate the parameter 8 under quadratic loss function
Where, R(6,8) =E[L(9,0)]
R(6.8) = J,"L(6,0)n(®/x)do
00 6 1
= Jy (1-3) (=7) hC/odo = 0
1 foo 1 roo
=Jo 0 h(®/)d6 = 5 [ h(b/x)do
-~ The Bayes Estimator under Precautionary Loss Function is
0 _ (-1
PLF —(p %)
2.3.6 Bayes Risk under Precautionary Loss Function
The Bayes risk R(G, 9) under precautionary loss function is defined as the expected loss under PLF

ie) R(6, 9) = E(L(6,0)) = (5‘;)2,

(2.3.5)

Where § =22 T
pt+y
2
“R(6,0) = ;[(i) 02— 20 <n+1>]
<n+1> pt+y p+3
—1
Gy

2.4. Bayes Estimation and Bayes risk using Informative Prior (Inverted Gamma Prior)

The pdf of Pareto type — I distribution is defined in (1) as follows

flx,a,0) = 9+1,x>a9>0
The likelihood functlon is defined as
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n
L= Hf(x, a,0)
i=1
L = eeneloga e—(9+1)2?=1logx
The Inverted gamma prior is defined as

a B
9(0) = {2 0=« s if0 > 0, (2, ) > 0

Therefore, the posterior pdf of inverted gamma prior is to be obtained as follows
L(x1,X2, X )g(0)
h(g/ x) = —

gn enbloga —(6+1) X logx ﬁg—(a+1)e—ﬁ/g
— Va

fooo gn enbloga —(6+1)3 logx %g—(a+l)e—ﬁ/g do

gn enBlog(x —(B+1)e—§jlogx 6—(a+1)e—ﬁ/9

I0°° gn enbloga —(6+1)p—3 logx 9—(a+1)3_ﬁ/9d9

gn gnbloga —(6+1) 9—(“+1)e_(1/0)ﬁ

I0°° gn enbloga —(6+1) 9—(a+1)3_(1/9 B 0

)P g

_(1
gn gnbloga —(6+1) g—(a+1), ( /B)eﬁ
)es

J'0°° gn gndloga —(6+1) g—(a+1)e_(l/9 eBdo
en—a—l e—Gp

- I0°° gn—a—1,—6p 4g

Thus,
2] pn—a o
”( /xl,xz,___“’xn) =—_@n« 1 e—ep

Hence, the posterior pdf under inverted gamma prior is

0 _ D" an—a-1 ,-6

h( /xl,xz,.....,xn) - men e P (2.4)
2.4.1 Bayes Estimation under Squared Error Loss Function
The Bayes estimator using squared error loss function is

E@®)=0

Y 6

E(Q) - fo 0 h( /xl,xz, .,Xn)de
_ (P pP" gn—a-1 o0p Jg
- fo 0 Vn—a
_ p"* Vn—a+l
- Vn—a pn—a+1

E@®) = "r%“ (2.4.1)

2.4.2 Byes Risk under Squared Error Loss Function
The Bayes risk under Squared Error Loss Function

L(0,0) = E(L( - 29)2)
[
= {z% (n? + a? = 2na) + 6% — 26 (np%a)}
= {M +602-20 (np%“)}

pZ
- Bayes Risk under Squared Error Loss Function is
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L©,8) = (T2 402 — 20 (22))

2.4.3 Bayes Estimation under Quadratic Loss Function
The Bayes estimator using quadratic loss function is

2.2
1o.0) = (59 = (1)
The risk function under the quadratic loss function is denoted by Ry r (9, é)
R N\ 2
RQLF(GJ 9) =F (1 - S)
o 2%
= fo (1 - E) h(6/x)d6

Differentiate with respect to ‘6" and equating to zero, we get
dRy(6,6)
6 ,
G 1
=207 (1-2) (=3)no/x)do

o

> () he/de - f7 () he/x0ds = 0
= 7 (5)h6/x0de = [ (5) h(8/x)de
o a(-s0)
= 9 = E(%)
5(52)
Consider

E(G) =1 () no/nde
=7 (3)E=0" " e brap
-1g" 1 g=bp g

I
=
3
|
3]
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8
)
—

oo() nal e=—014dg
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2
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2.4.4 Bayes Risk under Quadratic Loss Function
The Byes risk under Quadratic Loss Function is defined as

R(L(G,0)=E (L (Q%é)z>

() 2 (5]

2.4.5 Bayes estimation under Precautionary Loss Function
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The Precautionary Loss Function is defined as
_ 6 —6)?
L(8,0) = —F

The Bayes estimator under a precautionary loss function is defined as

Oprr = [E(6%)]'/
Consider

[ee]

E(ez) =f92h(9/x1,x2,.....,xn)d9

0
n—agn—a—le—ﬂp

—(® pn2P
e oaar
n—a)n—a+
2y —
E(6%) = >
~ (n—a)(n—a+1) 1/2
Oprr = [T]

(2.4.5)

The risk function under precautionary loss function is denoted by Rp.r (8, 0) is

Rp.r(8,6) = E[L(8,6)]
= Jy L(8,0)(%/x) a0

Let 2nr ©0)

= 2f7 (1-%) (=) n(®/x)do =0

A (G HOAT

= gl 0rClado = [ (3) hloas
= 53 E(@)A= 52

®>  EO) =0
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Where 0p, = [7(" “);"2 ““)]

2.4.6 Bayes Risk under Precautionary Loss Function
The Bayes risk under precautionary loss function is given by

R(6,6) =E (L ((@%)ZD
(=]

- (n—a)n—a+1)] /2
=]

_ 1 Jm—a)(n—a+1/(n—a)(n—a+1 62%p

- J(n—a)(n—a+1 p \/(n—a)(n—a+1) -
_ Joom—at]) 6%
- P Jo—om—arD

The, Bayes risk under precautionary loss function is
[(m—a)(n—a+ 1]V 0%p

R(9,0) = p (- —at DI
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1. Result and Discussion

26

In this study, we choose a sample size of n=25,50 and 100 to represent the small median and large data
set. The Bayes estimation of the shape parameter of the Pareto type | distribution using simulation technique
informative priors under different loss functions (SELF,QLF & PLF ) thorough and presented in table 3.1
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Table 3.1 Bayes Estimation and Bayes Risk of the Shape parameter @ = 0. 1 and Scale parameter
a = 0.2 & 0.4 (Pareto model)

Shape parameter = 0.1

SELF |

QELF |

PELF

SELF

QELF

PELF

prior

Scale psrameter =0.2

Scale parameter=0.4

EBE BR

BR

EBE

BR EBE

BR

EBE

BR

BE

ER

Exponentisl

0.10208% 0.0884541

0.101384

0.028454

0.0101788

0025058 0121813

00773328

00882542

D 5634438

0122013

0840352

0.0880885 00125242

0078854

0.368047

0.0783082

0142177 0102877

0.0806722

00874547

D 572043

01080439

08180820

0.0846372 0.0132020

0.0813181

0.361835

0.0704883

0157242 0.0202048

0.0085370

0.0260028

D&17180

0.0s02846

0.0008112

inverted
gamma

0.0824856 0.0885541

0.082456

0.028454

0.0870233

0108285 0.110851

0.0774321

0.0280472

05806208

0120521

0620582

0.0848485 0.0126042

0.202157

0.373010

0.0863315

0.140662 0.102032

0.0870722

0.0933874

0.5007402

0.1040492

0.8587001

0.0820484 0.0133088

0.07g6248

0.382255

0.0828854

0161228 0.0880217

0.0870378

0.084112

D.614047

0.0903e5

0.808425

3.2 Bayes Estimation and Bayes Risk of the Shape parameter (Pareto model)
The Bayes risk of the shape parameter for Pareto type — I distribution is estimated using informative

priors namely Exponential prior and Inverted Gamma prior under different loss functions. The survival data
given in table 3.2 is used for estimating the bayes estimation and bayes risk of the shape parameter of Pareto
Type- | distribution and presented in table 3.3.

Table: 3.2 Survival Time Distribution

Year of Number alive at beginning of Number dying in
follow-up interval interval
0-1 1100 240
1-2 860 180
2-3 680 184
34 496 138
4-5 358 118
5-6 240 60
6-7 180 52
7-8 128 44
8-9 84 32
>9 52 28

3.3 Bayes Estimation and Bayes Risk of the Shape parameter @ = 0. 1 and Scale parameter
a = 0.2 (Pareto model)

Shape parameter = 0.1
SELF QELF PELF
scale=0.2
Prior
BE BR BE BR BE BR
Exponential 05319 0.2578 0.4352 0.3328 0.4352 0.6604
Inverted gamma 0.4679 0.4313 0.3694 0.4508 0.4920 0.8133
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IV.  Discussion

From the table 3.1, it is estimated that the Bayes risk is decreased when the sample sizes are increased
and it is minimum under Squared Error Loss Function than Quadratic Loss Function and Precautionary Loss
Function using exponential prior and inverted gamma prior through simulation technique. If the shape parameter
a is increased, the Bayes risk under SELF is decreased, but it is increased under QLF and PLF using the
informative prior’s namely exponential and inverted gamma prior distributions. Thus, the SELF is the best one
than QLF and PLF to estimate the Bayes risk using informative priors.

From table 3.3 the Bayes risk under SELF is minimum than QLF and PLF using experimental prior
than inverted gamma prior. Thus SELF is the best one to estimate the Bayes risk using exponential prior than
inverted gamma prior. Finally, it is found that the Bayes risk under Squared Error Loss Function is minimum
than QLF and PLF using the exponential prior distribution than inverted gamma prior distribution in both
simulation technique and real life problem.

V.  Conclusions
In this study, the characterization of the Bayes risk of shape parameter of Pareto type —I distribution
using informative priors such as Exponential prior and Inverted Gamma prior under various loss functions
proposed through simulation technique and real life problem have been estimated. By comparing the Bayes risk
of the shape parameter, it is found that the Bayes risk under SELF is minimum than QLF and PLF using
exponential prior than inverted gamma prior in both simulation techniques and real life problem. Finally, it is
found that the SELF is the best one than QLF and PLF to estimate the Bayes risk using Exponential prior.
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