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Loss Function (PLF) are studied by using data, as per the result, it is found that the Bayes risk is minimum 

under SELF the QLF and PLF using Exponential prior the Inverted gamma prior 

Keywords Bayes Risk, Exponential distribution, Informative priors, Inverted Gamma  

distribution, Loss function, , Pareto distribution. 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

Date of Submission: 18-03-2023                                                                           Date of Acceptance: 03-04-2023 

----------------------------------------------------------------------------------------------------------------------------- --------- 

 

I. INTRODUCTION 

The Pareto probability distribution is a simple model for non- negative data with positively Skewed 

distribution. This distribution was introduced by Wilfredo Pareto (1848-1923) especially for wealth distribution 

of the population of a city within a given area. The use of the Pareto distribution as model to analyses stock 

prize and instability in business and economic, field of bio medical science, risk factor in insurance company, 

migration of population, survival time in quadratic system, Geophysical phenomena in society, reliability and 

life testing.   Sankudey and Sudhansu A.Maiti (2012), have studied the Bayes estimators of Rayleigh parameter 

and its associated risk based on extended Jeffrey’s prior under the assumptions of both symmetric and 

asymmetric loss function. R.K.Radha,(2015), studied the Bayesian analysis of exponential distribution using 

informative prior. Gaurav Shukla, Umesh Chandra and Vinod kumar (2020), derived and examined the 

expression for risk function under three different loss function. It is remarkable that the development of 

appropriate Bayesian inference procure has been very limited. Bayesian inference in the Pareto type I 

distribution for the special case in which the scale parameter is known.  In this study the characterization of 

Bayes risk using exponential prior and inverted gamma prior different loss function such as SELF,QLF and PLF 

is to described.   

 

The probability density function (pdf) of Pareto type – I distribution is defined as  

            f (t ;α,θ) =  
θαθ

𝑡θ+1
  ;           t > α ; θ>0; α>0          (1) 

Where t is a random variable, θ is the shape parameter and  is the scale parameter, which is known. 

The moments of Pareto type –I distribution, were given by   

Mean,       E(t) =  
αθ

θ−1
 ; θ > 1 

Variance, V(t) =  
θα2

 θ−1 2(θ−2)
 ; θ > 2 

 

II. METHODOLOGY 

2.1 Maximum Likelihood Estimation of Pareto Type I Distribution    

Let 𝑡1, 𝑡2, … . . 𝑡𝑛  be a set of ‘n’ random variables from  Pareto Type I distribution with Parameters  and α 

having the probability density function defined in (1), then the likelihood function, 

                                 L =  f(𝑡𝑖 ; α, θ)𝑛
𝑖=1                                                                        (2.1.1) 
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                                    =  
θαθ

𝑡𝑖
θ+1

𝑛
𝑖=1  

                                  L = 𝜃𝑛𝑒𝑛𝜃𝑙𝑜𝑔𝛼 𝑒−(𝜃+1) 𝑙𝑜𝑔 𝑡𝑖
𝑛
𝑖=1                                                                                                                                                                       

 

                              

𝜕𝑙𝑜𝑔𝐿

𝜕θ
= 
𝑛

𝜃
 + nlogα-  𝑙𝑜𝑔𝑡𝑖

𝑛
𝑖=1  

Using the Maximization Likelihood Principle, we get the estimated value of  θ as  

                             𝜃  =  
 𝑙𝑜𝑔 𝑡𝑖
𝑛
𝑖=1

𝑛
− log α 

−1

 

                     and 𝛼 = .1≤𝑖≤𝑛
𝑚𝑖𝑛𝑖 (𝑡𝑖)    

  In case of frequency distribution 

                            𝜃  =  
 𝑓𝑖𝑙𝑜𝑔 𝑡𝑖
𝑛
𝑖=1

𝑁
− log α 

−1

               (2.1.2) 

Where N=  𝑓 

 

2.2 Bayesian Estimation and Bayes Risk using Informative Prior  

 Bayesian estimation is an estimation of an unknown parameter 𝜽 that minimizes the expected loss for 

all observations 𝒙 𝒐𝒇 𝑿. The Bayes approach is an average case analysis by taking the average risk of an 

estimator for all the parameters involved in the distribution under study. Suppose we take the prior probability 

distribution 𝝅, on the parameter space 𝝎 then the average risk is defined as  

𝑹𝝅 𝜽  = 𝑬𝜽,𝒙 𝑳 𝜽, 𝜽    

and the Bayes risk for a prior 𝝅 is the minimum that the average risk can achieve  

𝑹 𝝅 =   𝑹𝝅 𝜽   𝜽

𝒊𝒏𝒇
 

 

2.3 Bayes estimation and Bayes risk using Informative Prior (Exponential prior) 

The posterior pdf of exponential prior:  

Assuming that 𝜃 has informative prior as exponential prior which takes the following form 

𝑔 𝜃 =
1

𝜆
𝑒−

𝜃
𝜆 ; 𝜃, 𝜆 > 0 

The posterior pdf of exponential prior is defined as  

          𝑕 𝜃 𝑡  =  
𝐿 𝑡1 ,𝑡2 ,…..,𝑡𝑛  g θ 

 𝐿 𝑡1 ,𝑡2 ,…..,𝑡𝑛  g θ 𝑑𝜃
∞

0

 

                      =
𝜃𝑛 𝑒− 𝜃+1 𝑝 1

𝜆
𝑒
−𝜃 𝜆 

 𝜃𝑛 𝑒− 𝜃+1 𝑝 1

𝜆
𝑒
−𝜃 𝜆 𝑑𝜃

∞
0

 

Consider,  

  𝜃𝑛𝑒− 𝜃+1 𝑝 1

𝜆
𝑒−

𝜃
𝜆 𝑑𝜃

∞

0
=  𝜃𝑛𝑒−𝜃𝑝𝑒−𝑝

1

𝜆
𝑒−

𝑝
𝜆 𝑑𝜃

∞

0
 

=  𝜃𝑛𝑒−𝜃𝑝−
𝜃

𝜆 
1

𝜆
𝑒−

𝑝
𝜆 𝑑𝜃

∞

0

 

                       =
𝑒−𝑝

𝜆

 𝑛+1

 𝑝+1
𝜆  

𝑛+1 

The posterior pdf of exponential prior is  

𝑕 𝜃 𝑡1, 𝑡2, … . . , 𝑡𝑛  =  
 𝑝 + 1

𝜆  
𝑛+1

 𝑛 + 1
𝜃𝑛𝑒−𝜃(𝑝 + 1

𝜆 ) 

 

 

2.3. Bayes Estimation and Bayes Risk using Informative Prior under different Loss Function 

2.3.1. Bayes Estimation under Squared Error Loss Function  

The SELF is defined as 𝐿 𝜃, 𝜃  =  𝜃 − 𝜃  2 

The Bayes estimator under squared error loss function is  
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 𝜃 𝑆𝐸𝐿𝐹 = 𝐸 𝜃 =  𝜃 𝑕 𝜃 𝑡1, 𝑡2, … . . , 𝑡𝑛  𝑑𝜃
∞

0
 

                 =  𝜃 
 𝑝+1

𝜆  
𝑛+1

𝜃𝑛 𝑒
−𝜃(𝑝+1

𝜆 )

 𝑛+1

∞

0
𝑑𝜃 

      The Bayes Estimator Squared Error Loss Function is 

 is 

 𝜃 𝑆𝐸𝐿𝐹 = 𝐸 𝜃 =
𝑛+1

𝑝+
1

𝜆

                                                   (2.3.1) 

 

2.3.2 Bayes Risk under Squared Error Loss Function 

The Bayes risk 𝑅 𝜃, 𝜃   under SELF is defined as the expected loss under SELF  

(ie) 𝑅 𝜃, 𝜃  = 𝐸[𝐿 θ  , θ ] =   𝜃 − 𝜃 
2

=  𝐸 𝜃 − 𝜃 2 

                             =  
𝑛+1

 𝑝+1
𝜆   

− 𝜃 

2

 

       𝑅 𝜃, 𝜃  =   
1

 𝑝+1
𝜆  

2   𝑛2 + 1 + 2𝑛 + 𝜃2 −
2𝜃(𝑛+1)

(𝑝+1
𝜆 )
  

 

2.3.3 Bayes Estimation under Quadratic Loss Function 

The Quadratic Loss Function is defined as 

   𝐿 𝜃, 𝜃  =   
𝜃−𝜃 

𝜃
 

2

=  1 −
𝜃 

𝜃
 

2

 

Consider the risk function 𝑅 𝜃, 𝜃     to estimate the parameter 𝜃 under quadratic loss function  

where, 𝑅 𝜃, 𝜃   = 𝐸  1 −
𝜃 

𝜃
 

2

 

                          =    1 −
𝜃 

𝜃
 

2
∞

0
 𝑕 𝜃 𝑡1, 𝑡2, … . . , 𝑡𝑛  𝑑𝜃 

𝜃 𝑄𝐿𝐹 =  
𝐸(1

𝜃 )

𝐸(1
𝜃2 )

                    (2.3.2) 

Where,  

       𝐸  
1

𝜃
 =    

1

𝜃
 

∞

0
 𝑕 𝜃 𝑡1, 𝑡2, … . . , 𝑡𝑛  𝑑𝜃 

                 =    
1

𝜃
 

∞

0

 𝑝+1
𝜆  

𝑛+1

 𝑛+1
𝜃𝑛𝑒−𝜃 𝑝+1

𝜆  
 

                 =
 𝑝+1

𝜆  
𝑛+1

 𝑛+1
 𝜃𝑛−1𝑒

−𝜃 𝑝+1
𝜆  
𝑑𝜃

∞

0
 

       𝐸  
1

𝜃
 =  

 𝑝+1
𝜆  

𝑛
                                   

Also,  

     𝐸  
1

𝜃2 =    
1

𝜃2 
∞

0
𝑕 𝜃 𝑥  𝑑𝜃 

                 =    
1

𝜃2 
∞

0
 
 𝑝+1

𝜆  
𝑛+1

 𝑛+1
𝜃𝑛𝑒−𝜃 𝑝+1

𝜆  𝑑𝜃 

                 =  
 𝑝+1

𝜆  
𝑛
 𝑝+1

𝜆  

 𝑛+1

 𝑛+1

 𝑝+1
𝜆  

𝑛+1 

                =  
 𝑝+1

𝜆  
2

𝑛(𝑛−1)
              

 The Bayes Estimator under Quadratic Loss Function is 

          𝜃 𝑄𝐿𝐹 =
(𝑛−1)

(𝑝+
1

𝜆
)
                                                                                                                        (2.3.3) 
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2.3.4 Bayes risk under the Quadratic Loss Function 

The Bayes risk 𝑅 𝜃, 𝜃    under Quadratic Loss Function defined as the expected loss under QLF, 

 𝑅 𝜃, 𝜃   = 𝐸 𝐿 θ  , θ  =   
𝜃−𝜃 

𝜃
 

2

=  1 − 
𝜃 

𝜃
 

2

 

Where 𝜃 =
(n−1)

(p+
1

λ
)
       

    𝑅 𝜃, 𝜃   =  1 −

 
𝑛−1

𝑝+
1
𝜆

 

𝜃
 

2

 

    𝑅 𝜃, 𝜃  = 1 +  
𝑛−1

𝜃 𝑝+
1

𝜆
 
 

2

− 2
𝑛−1

𝜃 𝑝+
1

𝜆
 
 

                 = 1 +  
1

𝜃 𝑝+
1

𝜆
 
 

(𝑛−1)2

𝜃 𝑝+
1

𝜆
 
− 2(𝑛 − 1)   

Therefore,  

  𝑅𝑄𝐿𝐹 𝜃, 𝜃  = 1 +  
1

𝜃 𝑝+
1

𝜆
 
 
𝑛2+1−2𝑛−2𝑛𝜃  𝑝+

1

𝜆
 +𝜃 𝑝+

1

𝜆
 

𝜃 𝑝+
1

𝜆
 

   

 

 

2.3.5 Bayes Estimation under Precautionary Loss Function 

The Precautionary Loss Function is defined as  

        𝐿𝑃𝐿𝐹 𝜃, 𝜃  =   
𝜃 −𝜃

𝜃
 

2

=  1 −
𝜃

𝜃 
 

2

  

Consider the risk function 𝑅 𝜃, 𝜃   to estimate the parameter 𝜃 under quadratic loss function 

Where,   𝑅 𝜃, 𝜃   = 𝐸 𝐿(𝜃 , 𝜃)  

             𝑅 𝜃, 𝜃      =  𝐿 𝜃 , 𝜃 𝑕(𝜃 𝑥 )𝑑𝜃
∞

0
 

                             =   1 −
𝜃

𝜃 
  −

1

𝜃 2 𝑕(𝜃 𝑥 )𝑑𝜃
∞

0
= 0 

    
1

𝜃 3  𝜃 𝑕(𝜃 𝑥 )𝑑𝜃
∞

0
=  

1

𝜃 2   𝑕(𝜃 𝑥 )𝑑𝜃
∞

0
 

 The Bayes Estimator under Precautionary Loss Function is 

                          𝜃 𝑃𝐿𝐹 =
(𝑛−1)

(𝑝+
1

𝜆
)
              (2.3.5)  

2.3.6 Bayes Risk under Precautionary Loss Function 

The Bayes risk   𝑅 𝜃, 𝜃    under precautionary loss function is defined as the expected loss under PLF  

(ie)  𝑅 𝜃, 𝜃   = 𝐸(𝐿 𝜃, 𝜃  ) =  
 𝜃 − 𝜃 

2

𝜃 
,  

Where 𝜃  =
𝑛+1

𝑝+
1

𝜆

 

   𝑅 𝜃, 𝜃   =  
1

 
𝑛+1

𝑝+
1
𝜆

 

  
𝑛+1

𝑝+
1

𝜆

 

2

+ 𝜃2 − 2𝜃  
𝑛+1

𝑝+
1

𝜆

   

2.4. Bayes Estimation and Bayes risk using Informative Prior (Inverted Gamma Prior) 

  

The pdf of Pareto type – I distribution is  defined in (1) as follows 

 𝑓 𝑥, 𝛼, 𝜃 =
𝜃𝛼𝜃

𝑥𝜃+1
; 𝑥 > 𝛼; 𝜃 > 0 

The likelihood function is defined as 
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𝐿 =  𝑓 𝑥, 𝛼, 𝜃 

𝑛

𝑖=1

 

𝐿 = 𝜃𝑒𝑛𝜃𝑙𝑜𝑔𝛼 𝑒− 𝜃+1  𝑙𝑜𝑔𝑥𝑛
𝑖=1   

The Inverted gamma prior is defined as 

 𝑔 𝜃 =  
𝛽𝛼

 𝛼
  𝜃−(𝛼+1)𝑒−

𝛽
𝜃
 ; 𝑖𝑓𝜃 > 0,  𝛼, 𝛽 > 0 

Therefore, the posterior pdf of inverted gamma prior is to be obtained as follows 

 𝑕 𝜃 𝑥  =  
𝐿 𝑥1 ,𝑥2 ,…..,𝑥𝑛  𝑔(𝜃)

 𝐿 𝑥1 ,𝑥2 ,…..,𝑥𝑛  𝑔(𝜃)𝑑𝜃
∞

0

 

  =
𝜃𝑛  𝑒𝑛𝜃𝑙𝑜𝑔𝛼 − 𝜃+1  𝑙𝑜𝑔𝑥  

𝛽𝛼

 𝛼
𝜃−(𝛼+1)𝑒

−
𝛽

𝜃
 

 𝜃𝑛  𝑒𝑛𝜃𝑙𝑜𝑔𝛼 − 𝜃+1  𝑙𝑜𝑔𝑥  
𝛽𝛼

 𝛼
𝜃−(𝛼+1)𝑒

−
𝛽

𝜃
 

𝑑𝜃
∞

0

 

            =
𝜃𝑛  𝑒𝑛𝜃𝑙𝑜𝑔𝛼 − 𝜃+1 𝑒− 𝑙𝑜𝑔𝑥  𝜃−(𝛼+1)𝑒

−
𝛽

𝜃
 

 𝜃𝑛  𝑒𝑛𝜃𝑙𝑜𝑔𝛼 − 𝜃+1 𝑒− 𝑙𝑜𝑔𝑥  𝜃−(𝛼+1)𝑒
−
𝛽

𝜃
 

𝑑𝜃
∞

0

 

   =
𝜃𝑛  𝑒𝑛𝜃𝑙𝑜𝑔𝛼 − 𝜃+1  𝜃−(𝛼+1)𝑒

− 1
𝜃  𝛽

 𝜃𝑛  𝑒𝑛𝜃𝑙𝑜𝑔𝛼 − 𝜃+1  𝜃−(𝛼+1)𝑒
− 1

𝜃  𝛽
𝑑𝜃

∞
0

 

   =
𝜃𝑛  𝑒𝑛𝜃𝑙𝑜𝑔𝛼 − 𝜃+1  𝜃−(𝛼+1)𝑒

− 1
𝜃  

𝑒𝛽

 𝜃𝑛  𝑒𝑛𝜃𝑙𝑜𝑔𝛼 − 𝜃+1  𝜃−(𝛼+1)𝑒
− 1

𝜃  
𝑒𝛽𝑑𝜃

∞
0

 

  =
𝜃𝑛−𝛼−1  𝑒−𝜃𝑝  

 𝜃𝑛−𝛼−1  𝑒−𝜃𝑝  𝑑𝜃
∞

0

 

Thus, 

𝑕 𝜃 𝑥1, 𝑥2 , … . . , 𝑥𝑛  =
𝑝𝑛−𝛼

 𝑛 − 𝛼
𝜃𝑛−𝛼−1 𝑒−𝜃𝑝

 

 

 
Hence, the posterior pdf under inverted gamma prior is  

 𝑕 𝜃 𝑥1, 𝑥2 , … . . , 𝑥𝑛  =
𝑝𝑛−𝛼

 𝑛−𝛼
𝜃𝑛−𝛼−1 𝑒−𝜃𝑝                                                                         (2.4) 

 

2.4.1 Bayes Estimation under Squared Error Loss Function  

The Bayes estimator using squared error loss function is  

     𝐸 𝜃 = 𝜃  

    𝐸 𝜃 =  𝜃 𝑕 𝜃 𝑥1 , 𝑥2, … . . , 𝑥𝑛  𝑑𝜃
∞

0
 

 =  𝜃
𝑝𝑛−𝛼

 𝑛−𝛼
𝜃𝑛−𝛼−1 𝑒𝜃𝑝𝑑𝜃 

∞

0
 

 =  
𝑝𝑛−𝛼

 𝑛−𝛼
 
 𝑛−𝛼+1

𝑝𝑛−𝛼+1
 

    𝐸 𝜃 =  
𝑛−𝛼

𝑝
             (2.4.1) 

 

2.4.2 Byes Risk under Squared Error Loss Function 

The Bayes risk under Squared Error Loss Function 

L (𝜃, 𝜃 ) = 𝐸(𝐿 𝜃 − 𝜃 
2

) 

  =  
𝑛−𝛼

𝑝
− 𝜃 

2

 

 =  
1

𝑝2
  𝑛2 + 𝛼2 − 2𝑛𝛼 + 𝜃2 − 2𝜃  

𝑛−𝛼

𝑝
   

 =  
𝑛2+𝛼2−2𝑛𝛼

𝑝2  + 𝜃2 − 2𝜃  
𝑛−𝛼

𝑝
   

 Bayes Risk under Squared Error Loss Function is 
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L (𝜃, 𝜃 ) =  
𝑛2+𝛼2−2𝑛𝛼

𝑝2  + 𝜃2 − 2𝜃  
𝑛−𝛼

𝑝
   

 

2.4.3 Bayes Estimation under Quadratic Loss Function 

The Bayes estimator using quadratic loss function is  

   𝐿 𝜃, 𝜃  =   
𝜃−𝜃 

𝜃
 

2

=  1 −
𝜃 

𝜃
 

2

 

The risk function under the quadratic loss function is denoted by 𝑅𝑄𝐿𝐹 𝜃, 𝜃     is 

𝑅𝑄𝐿𝐹 𝜃, 𝜃  = 𝐸  1 −
𝜃 

𝜃
 

2

     

        =   1 −
𝜃 

𝜃
 

2

𝑕 𝜃 𝑥  𝑑𝜃
∞

0
 

Differentiate with respect to ′𝜃′ and equating to zero, we get 

𝑑𝑅𝑄 𝜃 , 𝜃 

𝑑𝜃 
= 0 

 = 2  1 −
𝜃 

𝜃
 

2

 −
1

𝜃
 𝑕 𝜃 𝑥  𝑑𝜃

∞

0
 

   
𝜃 

𝜃2 𝑕 𝜃 𝑥  𝑑𝜃 −   
1

𝜃
 

∞

0
𝑕 𝜃 𝑥  𝑑𝜃 = 0 

∞

0
 

   
𝜃 

𝜃2 𝑕 𝜃 𝑥  𝑑𝜃 =   
1

𝜃
 

∞

0
𝑕 𝜃 𝑥  𝑑𝜃 

∞

0
 

 𝜃 . 𝐸  
1

𝜃2 = 𝐸  
1

𝜃
  

 𝜃 =
𝐸 

1

𝜃
 

𝐸 
1

𝜃2 
 

Consider 

 𝐸  
1

𝜃
 =   

1

𝜃
 

∞

0
𝑕 𝜃 𝑥  𝑑𝜃 

    =   
1

𝜃
 

∞

0

𝑝𝑛−𝛼

 𝑛−𝛼
𝜃𝑛−𝛼−1 𝑒−𝜃𝑝𝑑𝜃 

    =
𝑝𝑛−𝛼

 𝑛−𝛼
 𝜃−1∞

0
𝜃𝑛−𝛼−1 𝑒−𝜃𝑝𝑑𝜃 

        𝐸  
1

𝜃
 =  

𝑝

 𝑛−𝛼−1 
 

Also 

𝐸  
1

𝜃2
 =    

1

𝜃2
 

∞

0

𝑕 𝜃 𝑥  𝑑𝜃 

             =   
1

𝜃2 
∞

0

𝑝𝑛−𝛼

 𝑛−𝛼
𝜃𝑛−𝛼−1 𝑒−𝜃𝑝𝑑𝜃 

             =
𝑝𝑛−𝛼

 𝑛−𝛼

 𝑛−𝛼−2

𝑝𝑛−𝛼−2  

𝐸  
1

𝜃2
 =  

𝑃2

 𝑛 − 𝛼 − 1  𝑛 − 𝛼 − 2 
 

𝜃 𝑄𝐿𝐹 =
𝑛−𝛼−2

𝑝
        (2.4.3) 

 

2.4.4 Bayes Risk under Quadratic Loss Function  

The Byes risk under Quadratic Loss Function is defined as  

𝑅(𝐿 𝜃 , 𝜃 = 𝐸  𝐿  
𝜃 − 𝜃 

𝜃
 

2

  

                 =  1 −
𝜃 

𝜃
 

2

 

                =  1 −

𝑛−𝛼−2

𝑝

𝜃
 

2

 

   =  1 −
𝑛−𝛼−2

𝑝𝜃
 

2

 

𝐿 θ  , θ =  1 +  
𝑛 − 𝛼 − 2

𝑝𝜃
 

2

− 2 
𝑛 − 𝛼 − 2

𝑝𝜃
   

 

2.4.5 Bayes estimation under Precautionary Loss Function 
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The Precautionary Loss Function is defined as  

𝐿 θ  , θ =
(𝜃 − 𝜃)2

𝜃 
 

The Bayes estimator under a precautionary loss function is defined as  

 

        𝜃 𝑃𝐿𝐹 =  𝐸 𝜃2  1/2 
Consider 

𝐸 𝜃2 =  𝜃2𝑕 𝜃 𝑥1 , 𝑥2, … . . , 𝑥𝑛  𝑑𝜃

∞

0

 

       = 𝜃2∞

0

𝑝𝑛−𝛼𝜃𝑛−𝛼−1𝑒−𝜃𝑝

 𝑛−𝛼
𝑑𝜃 

𝐸 𝜃2 =
 𝑛 − 𝛼  𝑛 − 𝛼 + 1 

𝑝2
 

𝜃 𝑃𝐿𝐹 =  
 𝑛−𝛼  𝑛−𝛼+1 

𝑝2  
1/2

                   (2.4.5) 

 

The risk function under precautionary loss function is denoted by 𝑅𝑃𝐿𝐹(𝜃 , 𝜃) is 

𝑅𝑃𝐿𝐹 𝜃 , 𝜃 = 𝐸[𝐿 𝜃 , 𝜃 ] 

                   =  𝐿 𝜃 , 𝜃 𝑕 𝜃 𝑥  
∞

0
𝑑𝜃 

Let 
𝜕𝑅𝑃𝐿𝐹  𝜃 ,𝜃 

𝜕𝜃 
= 0 

 2  1 −
𝜃

𝜃 
  −

1

𝜃 2 
∞

0
𝑕 𝜃 𝑥  𝑑𝜃 = 0 

   1 −
𝜃

𝜃 
  −

1

𝜃 2 
∞

0
𝑕 𝜃 𝑥  𝑑𝜃 = 0 

 
1

𝜃 3  𝜃 𝑕(𝜃 𝑥 )𝑑𝜃
∞

0
=    

1

𝜃 2  𝑕(𝜃 𝑥 )𝑑𝜃
∞

0
 

 
1

𝜃 3  𝐸 𝜃 =
1

𝜃 2 

 𝐸 𝜃 =
𝜃 3

𝜃 2 

 𝐸 𝜃 = 𝜃  

Where 𝜃 𝑃𝐿𝐹 =  
(𝑛−𝛼)(𝑛−𝛼+1)

𝑝2  
1/2

 

 

2.4.6 Bayes Risk under Precautionary Loss Function  

The Bayes risk under precautionary loss function is given by 

      𝑅 𝜃 , 𝜃  = 𝐸  𝐿  
 𝜃 − 𝜃 

2

𝜃 
   

       =
  

(𝑛−𝛼)(𝑛−𝛼+1)

𝑝2  
1/2

−𝜃 

2

 
(𝑛−𝛼)(𝑛−𝛼+1)

𝑝2  
1/2  

       =
1

 (𝑛−𝛼)(𝑛−𝛼+1

 (𝑛−𝛼)(𝑛−𝛼+1 (𝑛−𝛼)(𝑛−𝛼+1

𝑝
+

𝜃2𝑝

 (𝑛−𝛼)(𝑛−𝛼+1)
− 2𝜃 

     =
 (𝑛−𝛼)(𝑛−𝛼+1)

𝑝
+

𝜃2𝑝

 (𝑛−𝛼)(𝑛−𝛼+1)
− 2𝜃 

The, Bayes risk under precautionary loss function is 

𝑅 𝜃 , 𝜃 =  
 (𝑛 − 𝛼)(𝑛 − 𝛼 + 1) 1/2

𝑝
+

𝜃2𝑝

 (𝑛 − 𝛼)(𝑛 − 𝛼 + 1) 1/2
− 2𝜃 

 

 

III. Result and Discussion 

 In this study, we choose a sample size of n=25,50 and 100 to represent the small median and large data 

set. The Bayes estimation of the shape parameter of the Pareto type I distribution using simulation technique 

informative priors under different loss functions (SELF,QLF & PLF ) thorough and presented in table 3.1 
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Table 3.1 Bayes Estimation and Bayes Risk of the Shape parameter 𝜽 = 𝟎. 𝟏 and Scale parameter 

𝜶 = 𝟎. 𝟐 & 0.4 (Pareto model) 

 
 

3.2 Bayes Estimation and Bayes Risk of the Shape parameter (Pareto model) 

The Bayes risk of the shape parameter for Pareto type – I distribution is estimated using informative 

priors namely Exponential prior and Inverted Gamma prior under different loss functions. The survival data 

given in table 3.2 is used for estimating the bayes estimation and bayes risk of the shape parameter of Pareto 

Type- I distribution and presented in table 3.3.  

 

Table: 3.2 Survival Time Distribution 
Year of 

follow-up 

Number alive at beginning of 

interval 

Number dying in 

interval 

0-1 1100 240 

1-2 860 180 

2-3 680 184 

3-4 496 138 

4-5 358 118 

5-6 240 60 

6-7 180 52 

7-8 128 44 

8-9 84 32 

≥ 9 
52 28 

 

3.3 Bayes Estimation and Bayes Risk of the Shape parameter 𝜽 = 𝟎. 𝟏 and Scale parameter 

     𝜶 = 𝟎. 𝟐 (Pareto model)  

 

 

 

 

 

 

 

 

 

 

 

Shape parameter = 0.1 

  

  
SELF QELF PELF 

Prior 
scale=0.2 

BE BR BE BR BE BR 

Exponential 

 
0.5319 0.2578 0.4352 0.3328 0.4352 0.6604 

Inverted gamma 0.4679 0.4313 0.3694 0.4508 0.4920 0.8133 
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IV. Discussion 
 From the table 3.1, it is estimated that the Bayes risk is decreased when the sample sizes are increased 

and it is minimum under Squared Error Loss Function than Quadratic Loss Function and Precautionary Loss 

Function using exponential prior and inverted gamma prior through simulation technique. If the shape parameter  

𝛼 is increased, the Bayes risk under SELF is decreased, but it is increased under QLF and PLF using the 

informative prior’s namely exponential and inverted gamma prior distributions. Thus, the SELF is the best one 

than QLF and PLF to estimate the Bayes risk using informative priors.  

 From table 3.3 the Bayes risk under SELF is minimum than QLF and PLF using experimental prior 

than inverted gamma prior. Thus SELF is the best one to estimate the Bayes risk using exponential prior than 

inverted gamma prior. Finally, it is found that the Bayes risk under Squared Error Loss Function is minimum 

than QLF and PLF using the exponential prior distribution than inverted gamma prior distribution in both 

simulation technique and real life problem. 

 

V. Conclusions 
In this study, the characterization of the Bayes risk of shape parameter of Pareto type –I distribution 

using informative priors such as Exponential prior and Inverted Gamma prior under various loss functions 

proposed through simulation technique and real life problem have been estimated. By comparing the Bayes risk 

of the shape parameter, it is found that the Bayes risk under SELF is minimum than QLF and PLF using 

exponential prior than inverted gamma prior in both simulation techniques and real life problem. Finally, it is 

found that the SELF is the best one than QLF and PLF to estimate the Bayes risk using Exponential prior.  
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