Efficient dominating sets in ladder graphs

Z.Mostaghim¹, A.Sayed Khalkhali²

^{1,2}School of Mathematics, Iran University of Science and Technology, Tehran, Iran

Abstract—An independent set S of vertices in a graph is an efficient dominating set when each vertex not in S is adjacent to exactly one vertex in S. In this note, we prove that a ladder graph L_n has an efficient dominating set if and only if n be a multiple of 4. Also we determine the domination number of a ladder graph L_n .

Keywords—Efficient dominating set, Perfect code, Domination number, Ladder graph, Sphere packing

I.

INTRODUCTION

Let $\Gamma = (V, E)$ be a finite undirected graph with no loops and multiple edges. We follow the terminology of [2] and [3]. Given $S \subseteq V$, let the open neighbourhood N(S) of S in Γ be the subset of vertices in $V \setminus S$ adjacent to some vertex in S, and let the corresponding closed neighbourhood be $N[S] = N(S) \cup S$. A set $S \subset V$ is a dominating set if N[S] = V, that is, every vertex in $V \setminus S$ is adjacent to some vertex in S. The domination number $\gamma(\Gamma)$ is the minimum cardinality of a dominating set in Γ . If the dominating set S is a stable set of Γ , then S is an independent dominating set. Also, when every vertex in $V \setminus S$ is adjacent to exactly one vertex in S, then S is a perfect dominating set. A dominating set S which is both independent and perfect is an efficient dominating set. In what follows we may refer to an efficient dominating set as an E-set. Given the graph $\Gamma = (V, E)$, we call any subset C of V a code in Γ .

We say that C corrects t errors if and only if the sets $S_c = \{u | u \in V, d(u, c) \le t\}$ are pairwise disjoint. Morever we call C a t-perfect code if and only if these sets form a partition of V. A t-perfect code C is called nontrivial if and only if t > 0 and card(C) > 1.

E-sets correspond to perfect 1-correcting codes in Γ , as treated by Biggs[1] and Kratochvil[4]. Equivalently, they provide a perfect packing of Γ by balls of radius 1. When Γ is r-regular, the so-called sphere packing condition |V| = (r+1)|C|

is trivially a necessary condition for C to be an E-set of Γ .

We need the following two results from [3]. We recall that the maximum degrees of vertices of Γ is denoted by $\Delta(\Gamma).$

Theorem 1.1*For any graph* Γ *of order n,*

$$\left|\frac{n}{1+\Delta(\Gamma)}\right| \le \gamma(\Gamma) \le n - \Delta(\Gamma)$$

Theorem 1.2 If Γ has an efficient dominating set, then the cardinality of any efficient dominating set equals the domination number $\gamma(\Gamma)$. In particular, all efficient dominating sets of Γ have the same cardinality.

THE MAIN RESULTS II.

We use the following remark in the sequel

Remark. Suppose that n(> 1) be a natural number, the dihedral group D_{2n} of order 2n is defined by the presentation Then the distinct elements of D_{2n} are as follows: $D_{2n} = \langle x, y | x^n = y^2 = (xy)^2 = 1 >.$ $\{1, x, \dots, x^{n-1}, y, xy, \dots, x^{n-1}y\}.$ The Cayley graph $C(D_{2n}, X)$ of D_{2n} with respect to the generating set $X = \{x, x^{-1}, y\}$ is a ladder graph L_n .

Theorem 2.1 Let L_n be a ladder graph of order 2n. Then the domination number of L_n is determined as follows:

$$\gamma(L_n) = \begin{cases} \frac{\overline{2}}{2} & 4|n\\ \frac{n}{2} + 1 & if2|n, 4 \neq n\\ \left[\frac{n}{2}\right] + 1 & 2 \neq n \end{cases}$$

Proof. If 4|n, then n = 4k for some natural number k. Let $S = \{1, x^4, x^8, \dots, x^{4k-4}, x^2y, x^6y, \dots, x^{4k-2}y\}$. We show that S is a dominating set. It is easy to see that $|S| = \frac{n}{2} = 2k$. Since $L_n \cong C(D_{2n}, X)$ then for all $i, 2 \le i \le n - 1$, a vertex x^i is adjacent to three vertices x^{i+1} , x^{i-1} and $x^i y$. There are 3 cases.

If 4|i, then $x^i \in S$.

If 2|i and $4 \nmid i$, then $x^i y \in S$.

If $2 \nmid i$, then i = 4m - 1 or i = 4m + 1 for some natural numberm.

If i = 4m - 1, then $x^{i+1} \in S$ and if i = 4m + 1, then $x^{i-1} \in S$.

Similarly, for all $i, 1 \le i \le n - 1$, a vertex $x^i y$ is adjacent to some vertex in S. For three vertices $1, x^{n-1}, y$, we have $1 \in S$ and y, x^{n-1} are adjacent to 1. So S is a dominating set. Since L_n is a 3-regular graph, it follows from sphere packing condition that

$$\nu(L_n) \ge \frac{n}{2}$$

Also S is a dominating set of L_n which $|S| = \frac{n}{2}$. Hence it follows that $\gamma(L_n) = \frac{n}{2}$; (n = 4k). If *n*be odd, then we have 2 cases.

Case1:n = 4k + 1 for some natural number k.

In this case, let $S = \{1, x^4, x^8, ..., x^{4k}, x^2y, x^6y, ..., x^{4k-2}y\}$, then

$$|S| = 2k + 1 = \left[\frac{4k + 1}{2}\right] + 1.$$

It is easy to see that S is a dominating set, and by theorem 1.1, $\left[\frac{n}{2}\right] + 1 \le \gamma(L_n) \le |S| = \left[\frac{n}{2}\right] + 1$.

Therefore, $\gamma(L_n) = \left[\frac{n}{2}\right] + 1; (n=4k+1).$ **Case2**:n = 4k - 1 for some natural number k. Let $S = \{1, x^4, x^8, \dots, x^{4k-4}, x^2y, x^6y, \dots x^{4k-2}y\}$, then

$$S| = 2k = \left[\frac{4k-1}{2}\right] + 1 = \left[\frac{n}{2}\right] + 1.$$

It is similar to case 1. So $\gamma(L_n) = \left[\frac{n}{2}\right] + 1$; (n = 4k - 1).

ad
$$4 \nmid n$$
, then $n = 2k$ such that k is an odd number. Let
 $S = \{1, x^4, x^8, ..., x^{2k-2}, x^2y, x^6y, ..., x^{2k-4}y, x^{2k-1}\}$

It is easy to see that S is a dominating set and $|S| = k + 1 = \frac{n}{2} + 1$. By theorem 1.1,

$$\frac{n}{2} \le \gamma(L_n) \le |S| = \frac{n}{2} + 1.$$

We show that the domination number $\gamma(L_n) \neq \frac{n}{2}$. It follows from the proof of theorem 1.1, that $\gamma(\Gamma) = \frac{n}{1+\Delta(\Gamma)}$ if and only if Γ has a γ -set(dominating set of minimum cardinality) S such that $N[u] \cap N[v] = \emptyset$ for all $u, v \in S$ and $|N[v]| = \Delta(\Gamma)$ for all $v \in S$. If $\gamma(L_n) = \frac{n}{2}$, then L_n has a γ -set S such that $N[u] \cap N[v] = \emptyset$ for all $u, v \in S$. Since $N[S] = V(L_n)$, therefore $3k = |N[S]| = |V(L_n)| = 2n = 4k$

is a contradition. So $\gamma(L_n) \neq \frac{n}{2}$.

If 2|nar

Rem

Remark. If the ladder graph
$$L_n$$
, which is a 3-regular graph has an efficient dominating set S, then by the sphere packing condition we have $|S| = \frac{n}{2}$. Therefore, only the ladder graph with even order has an efficient dominating set.

Theorem 2.2 The ladder graph L_n of order 2n, has an efficient dominating set if and only if 4|n.

Proof. By remark and this fact that $|S| = \gamma(L_n)$, the ladder graph has an E-set if 4|n. Also if 4|n, then we show that the set $S = \{1, x^4, x^8, \dots, x^{4k-4}, x^2y, x^6y, \dots, x^{4k-2}y\}$

is a dominating set. It is easy to see that S is an independent and perfect set. Therefore S is an E-set of ladder graph L_n .

REFERENCES

- N.Biggs, Perfect Codes in Graphs, J. Combin. TheorySer B 15(1973) 288-296. [1].
- I.J.Dejter, O.Serra, Efficient dominating sets in Cayleygraphs, Discrete Appl. Math. 129(2003)319-328. [2].
- [3]. T.W.Haynes, S.t.Hedetniemi, P.J.Slater, Fundamentals of Domination in Graphs, Marcel Dekker, NewYork (1998).
- [4]. J.Kratochvil, Perfect Codes over Graphs, J. Combin. TheorySerB 40(1986)224-228.