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Abstract—Modelling and simulation study of continuous cooling crystallizers is presented for needle-shaped crystals 

using a detailed two-dimensional population balance model. The population balance equation involves 1D nucleation, 

growth of two characteristic crystal facets, and is completed with the mass balance equations of solute and solvent, and 

the heat balances of the crystalline suspension and cooling medium. Simulation has been carried out by using the 

moment equation model written for the low order joint moments of crystal sizes. The transient behaviour of the 

crystallizer and the effects of kinetic and process parameters on the characteristics of the crystal size distribution are 

analysed by simulation. 
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I. INTRODUCTION 
Non-isothermal continuous crystallizers, extensively used in the chemical industry, usually are sensitive to both 

the external and internal disturbances. This is because of the highly nonlinear kinetics, many temperature-dependent 

parameters, which are, in turn, also nonlinear, and different feedbacks between the variables and elementary processes taking 

place in crystallization processes. All these properties, as well as the interactions between the kinetics, fluid and heat transfer 

dynamics as well as the crystal size distribution may give rise to different complexities in both the steady state and dynamic 

behaviour of continuous crystallizers [1,2].  

The crystal size distribution depends on the shape of crystals thus when crystals cannot be described adequately by 

the often used 1D forms with statistics-based volume shape factors then the influence of shape on the process seems to be 

important as well. What is more, the shape of crystals produced in solution crystallization usually plays important role in the 

subsequent applications, especially in the pharmaceutical industry since it influences also the effectiveness of downstream 

processing significantly. 

Needle- or rod-like crystals (crystals with large aspect ratio) are commonly encountered in pharmaceutical and fine 

chemicals industries thus development of process models [3-9] and of methods for determining the size distribution of 

crystals [10-14] has received considerable attention. However, detailed population balance model for studying the dynamic 

aspects of the problem have not been published yet despite that deeper understanding of that seems to be important in 

relation to both the crystallisation process itself, and to the operation, control, and design of industrial crystallizers with such 

types of crystals. 

The purpose of the paper is to examine the transient characteristics of a continuous cooling crystallizer by 

developing a 2D population balance model involving 1D nucleation, growth of two characteristic crystal facets, which is 

completed with the mass balance equations of solute and solvent, and the heat balances of the crystalline suspension and 

cooling medium. A moment equation model for the joint moments of crystal sizes is determined for simulation purposes. 

The transient behaviour of the crystallizer and the effects of kinetic and process parameters on the characteristics of the 

crystal size distribution are analysed by simulation.  

 

II. POPULATION BALANCE MODEL FOR NEEDLE-SHAPED CRYSTALS 
A. Population balance equation 

Crystals with needle-like habits are simple connected convex polyhedrals and can be characterised by two size 

dimensions L1 and L2, as it is shown in Fig.1, which are sufficient to compute the volumes of crystals, required to develop 

the mass balance of solute. Namely, in this case the volume of each crystal can be given as 
2
21)( LLktv Vc   (1) 

where kV is a shape factor referring to the actual form in Fig.1. As a consequence, the crystal population is described by the 

2D population density function  tLL ,, 21 →  tLLn ,, 21  by means of which   2121 ,, dLdLtLLn  expresses the number of 

crystals from the size domain  111, dLLL  ×  222, dLLL   in a unit volume of suspension at time t. 

Let us assume that: 
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Fig.1 Three different two-dimensional crystal forms 

 
- The crystallizer is perfectly mixed and the working volume is constant. 

- The cooling medium can be treated as gradient-less. 

- All new crystals are formed at a nominal size 0,2,1  nnn LLL , so that we can assume 0nL . 

- Crystal breakage and agglomeration are negligible. 

- The primary nucleation rate Bp is given by Volmer’s model 
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- The rate of secondary nucleation Bb is given by the power law expression 
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- The overall linear growth rates of the two habit faces, G1 and G2 are assumed to be size independent and have the 

forms of power law formulae 
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In Eqs (2) and (4), c and cs denote, respectively, the solute and equilibrium saturation concentrations, and the kinetic coeffi-

cients kg10, kg20, kp0 and kb0 are constant. In Eq.(3), c  denotes the volume of crystal population in a unit volume of 

suspension, obtained by combining Eq.(1) and the population density function as 

21

0 0

21
2
212,1 ),,()( dLLdtLLnLLktk VVc  



   (5) 

while ε in Eq.(2) stands for the volume fraction of solution which is expressed as 

)(11 2,1 tkVc    (6) 

Under such conditions, the population balance equation takes the form 
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subject to the initial and boundary conditions 
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In Eq.(7), τ stands for the mean residence time while in Eq.(9) ep and eb are binary existence variables by means of which the 

combination of the primary and secondary nucleation rates Bp and Bb can be provided. 

 

B. Mass and heat balance equations 

The mass and heat balances are written, respectively, for the solute and solvent, the crystalline suspension and the 

cooling medium.  
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The mass balance equation for solute: 

  vc
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where vcR  denotes the production rate of volume of the crystalline phase referred to a unit volume of suspension, given as 
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d
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Similarly, the balance equation for the solvent takes the form 
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The energy balance equation for the crystal suspension is  
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where cccsvsv CcCcC  )1()(   and ccinsvinsvincinin CcCcC  )1()(  . 

Finally, the energy balance for the cooling medium is written as 
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The dependence of the equilibrium saturation concentration on the temperature is described by a second order polynomial  
2

210)( TaTaaTcs   (16) 

The set of ordinary equations (11)-(14) are completed with appropriate initial equations. 

 

III. MOMENT EQUATIONS MODEL 
The total volume of crystal population in the suspension, required writing the mass balance, and also the heat 

balance equations can be expressed by means of the joint moment 2,1  of crystal sizes L1 and L2. As a consequence, 

variation in time of the moment 2,1  has to be tracked during the course of the process. This can be done by solving the 

population balance equation (7) using some numerical method, or by developing a set of moment equations for the joint 

moments  
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required to compute the moment 2,1  directly. In the later case, the infinite hierarchy of the moment equations 

corresponding to Eq.(7) becomes of the form 
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This infinite set of equations can be closed at any order but natural closing can be made at the third order joint moment 2,1  

since, because of Eqs (5) and (12), this moment is required for all balance equations (11)-(14) to close. To compute this 

moment the sequence of equations for moments 1,12,01,00,10,0 ,,,,   are also required: 
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Taking into consideration the kinetic rate equations, the set of moment equations (20)-(25) completed with the balance equa-

tions (11)-(15) provide a close moment equations model. 
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IV. SIMULATION RESULTS AND DISCUSSION 
The set of 10 ordinary differential equations governing the time evolution of variables 

hsv TTcc ,,,,,,,,, 2,11,12,01,00,10,0   was solved in MatLab environment using ODE solvers. The basic values of 

process parameters used in simulation are listed in the Table 1, while the basic values of kinetic parameters of nucleation and 

crystal growth, as well as of coefficients of the equilibrium saturation concentration used in simulation are shown in Table 2. 

 

TABLE 1: BASIC VALUES OF PROCESS PARAMETERS USED IN SIMULATION 

V=10  m3 τ=103 s 

τh=6∙102 s 

UaV=5.0∙105 J kg K-1 m-3 s-1 

Tin=90 oC Thin=18 °C φin=3.0∙106 J kg K-1 m-3 

 

TABLE 2 : BASIC VALUES OF KINETIC PARAMETERS USED IN SIMULATION 

kb0=2.0∙107  

#/[m3s(kg m-3)b] 

kp0=1.6∙1018  

# m-3s-1 

a1=-9.77e-5  

kg m-3 

kg2=12.2∙10-6  

m/[s(kg m-3)g] 

kg1=1.0∙10-4  

m/[s(kg m-3)g] 

a0=0.21  

kg m-3 K-1 

b=2.0. j=1.5 

g1=1.5, g2=1.75 

ke=0.2 

ΔHc=-44.5 J kg-1 

a2=9.31e-5  

kg m-3 K-2 

Eb=1.5∙104 J mol-1 Eg=3∙104 J mol-1 Ep=1∙104 J mol-1 

 

Fig.2 presents the temporal evolutions of temperatures of the cooling medium and crystalline suspension in answer 

of the step-wise cooling rate depending on the inlet temperature of the cooling medium. Naturally, the results, especially the 

transient processes depend also on the cooling strategy but for the sake of obtaining real comparisons of the effects all 

simulation runs have been performed using such step-wise cooling process strategy with natural cooling process of the 

crystallizer. Fig.3 presents also the evolutions of these characteristic temperatures but under the influence of variable 

volumetric flow rate of the  
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Fig. 2 Evolution of the temperatures of crystalline suspension and cooling medium depending on the inlet cooling medium 

temperature in the case primary nucleation 

 
cooling medium. In this case the inlet temperature of the cooling medium was 18 OC. These experiments have shown that 

under the given process conditions both factors play important role in controlling the crystallizer but the temperature of the 

cooling medium is the dominant one hence the effects of this factor have been studied more widely. 

Figs 4 and 5 demonstrate well that the transient behaviour of the number of crystals, i.e. of the zero order joint 

moments 00  exhibit characteristic differences. In the case of secondary nucleation when only seed crystals induce 

production of new crystals the processes appear to be rather smooth, and the steady sate values, i.e. the final crystal numbers 

are proportional to the inlet temperature of the cooling medium. When, however, primary nucleation occurs in the 

crystallizer the transient processes usually exhibit large impulses or even damped oscillations as it is shown in Fi.5 for 

temperatures 18 OC and 10 OC. The response for temperature -10 OC exhibits an interesting feature: the steady state value 

becomes smaller than that for temperature 0.0 OC. Since here even the impulse has turned out much smaller it proves that in 

this case the inertia of the cooling medium-crystallizer system practically filtered out the effects of the quick step-wise 

temperature input between 18 OC and -18 OC.  

T, oC 

t, s 



Transient Analysis of Continuous Cooling Crystallizers with Needle-Shaped Crystals 

12 

10
0

10
5

10

20

30

40

50

60

70

80

90

100

 

 

T
h
, q

hin
=5.0

T, q
hin

=5.0

T
h
, q

hin
=1.0

T, q
hin

=1.0

T
h
, q

hin
=0.1

T, q
hin

=0.1

 
Fig. 3 Evolution of the temperatures of crystalline suspension and cooling medium depending on the volumetric flow rate of 

cooling medium in the case primary nucleation 
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Fig. 4 Evolution of the number of crystals depending on the inlet temperature of cooling medium in the case secondary 

nucleation 
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Fig. 5 Evolution of the number of crystals depending on the inlet temperature of cooling medium in the case primary 

nucleation 

 

Figs 6 and 7 present, respectively, the temporal evolutions of the mean crystal sizes 1L  and 2L , defined as 

0,00,11 L  and 0,0012 L  as a function of the inlet temperature of cooling medium in the case of primary 

and secondary nucleation. Again, characteristic differences between both the transient and stead states are seen showing that 

the results obtained when secondary nucleation is the dominant generator of the newly born crystals appear to be more 

scattered. For the sake of comparison, evolutions of the mean crystal sizes 1L  and 2L  are presented in Fig.8 in the case 

if both nucleation mechanisms play important role in affecting the crystal size distribution. Note that the complex transient 

behaviour of the mean crystal sizes is a consequence of the complex behaviour of the corresponding joint moments. Fig.8 

illustrates well  
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Fig. 6 Evolution of the mean crystal sizes 1L  and 2L  depending on the inlet temperature of cooling medium in the case 

primary nucleation 
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Fig. 7 Mean crystal sizes 1L  and 2L  depending on the inlet temperature of cooling medium in the case secondary 

nucleation 
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Fig. 8 Mean crystal sizes 1L  and 2L  depending on the inlet temperature of cooling medium in the case primary and 

secondary nucleation 

 

that, although some differences can be observed in the corresponding crystal sizes but the primary nucleation dominates the 

process definitely. 

Figs 9 and 10 show, respectively, the steady state values of the mean crystal sizes 1L  and 2L  for primary and 

secondary nucleation as functions of the corresponding kinetic parameters ke and b. As is is seen in the regions of small 

values of parameters ke and b the differences between the mean crystal sizes obtained for the inlet temperatures 18 oC and -

18 oC are decreasing monotonously what is more they become of opposite sign. These figures illustrate also that the steady 

state values of the mean crystal sizes are more scattered in the case of secondary nucleation. 

The temporal evolution of the mean aspect ratio defined as 21 LL  is presented in Fig.11 for both the primary and 

secondary nucleation as a function of the inlet temperature of cooling medium. These diagrams reveal that lower cooling 

temperature results in higher mean aspect ratio in both cases. 
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Fig. 9 Mean crystal sizes 1L  and 2L  depending on the inlet temperature of cooling medium in the case of primary 

nucleation 
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Fig. 10 Mean crystal sizes 1L  and 2L  depending on the inlet temperature of cooling medium in the case of secondary 

nucleation 

 

10
0

10
5

0

5

10

15

20

25

30

35

40

45

 

 

Primary, T
hin

=18 
o
C

Primary, T
hin

=-18 
o
C

Secondary, T
hin

=18 
o
C

Secondary, T
hin

=-18 
o
C

 

Fig. 11 Evolution of the mean aspect ratio of crystals 21 LL  depending on the inlet temperature of cooling medium in 

the case primary and secondary nucleation 

 

V. CONCLUSIONS 
The detailed 2D population balance model which involves a 2D population balance equation as well as the mass 

balance equations of solute and solvent, and the heat balances of the crystalline suspension and cooling medium has proved a 

useful tool to study the transient and steady state behaviour of continuous cooling crystallizers with needle-shaped crystals. 

The moment equations model for the joint moments of crystal sizes can be closed at any order therefore it provides correct 

results in numerical experimentation.  

The transient behaviour of the law order joint moments and, as a consequence, the mean crystal sizes has proved to 

be rather complex and exhibited characteristic properties depending on the intensity of cooling and the dominant mechanism 

of nucleation. Analysing the results obtained by simulation allows suggesting that the transient processes measured in situ in 

crystallizers provide great possibilities to apply in identification of parameters of crystallization.  

 

VI. ACKNOWLEDGMENTS 
This work was supported by the TAMOP-4.2.1/B-09/1/KONV-2010-0003 project which is gratefully 

acknowledged. The financial support by the Hungarian Scientific Research Fund under Grant K77955 is also acknowledged.  

t, s 

b 

ke 

L ,m 

L ,m 

21 LL  



Transient Analysis of Continuous Cooling Crystallizers with Needle-Shaped Crystals 

15 

 

SYMBOLS USED 

b exponent of secondary nucleation rate 

B nucleation rate # m-3s-1 

c concentration of solute, kgm-3 

cs equilibrium saturation concentration, kg m-3 

C heat capacity, J K-1 

E activation energy, J mol-1 

g exponent of crystal growth rate 

G crystal growth rate, ms-1 

j exponent of secondary nucleation rate 

ke parameter of primary nucleation rate 

kg rate coefficient of crystal growth, m/[s(kg m-3)g] 

kp rate coefficient of primary nucleation, # m-3s-1 

kb rate coefficient of secondary nucleation, #/[m3s(kg m-3)b] 

kV volume shape factor 

L linear size of crystals, m 

n population density function, # m-4 

S supersaturation ratio, c/cs 

T temperature, °C, °K 

c  volume of crystals, m3 m-3 

 

Greek letters: 

 volume ratio of solution 

µk,m (k,m)th order joint moment 

 density, kgm-3 

τ mean residence time, s 

Subscripts 

0 initial value 

1 length coordinate of crystals 

2 width coordinate of crystals 

in inlet 

p primary nucleation 

b secondary nucleation 

h cooling medium 
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