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Abstract
This study investigates the existence of solutions to boundary value problems(BVPs)

using fractional pantograph integrodifferential equations with several fractional deriva-
tives (Caputo and Riemann-Liouville). The existence of solutions is established using
Krasnoselskii’s fixed-point theorem, while uniqueness is verified using the Banach con-
traction principle. An example is offered to demonstrate the theoretical results’ validity.
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1. Introduction

Fractional differential equations have recently gained prominence in advancing special func-
tions and integral transforms. Their applications extend across various fields, including
biology, control theory, bioengineering, biomedical sciences, economics, and variational prob-
lems, among others. For additional insights, please consult references [3, 4, 12, 13] and the
related literature.

As a result of these advancements, the question of existence for solutions to fractional
differential equations within these models has captured the interest of numerous mathemati-
cal researchers. This has led to a proliferation of articles discussing the existence of solutions
for initial, boundary, and nonlocal fractional equations, employing various types of fractional
derivatives (see references [10,11] for further exploration). Significant contributions address-
ing both the integral operator and arbitrary fractional-order differential operators can be
found in [5, 6, 10]. The main focus of this field of study is on creating theoretical models,
instruments, and procedures for the examination and resolution of fractional differential
equations (FDEs). Researchers can develop effective methods for solving FDEs and
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learn more about their practical applications by studying the behavior and character-
istics of their solutions. In recent years, many authors have looked at the existence and
uniqueness theorems for FDEs with mixed fractional derivatives [1,2,7]. Wang [15] explored
the stability outcomes of neutral fractional functional differential equations with several
Caputo fractional derivatives, applying conventional fixed point theorems. Numerous re-
searchers have studied multifractional derivatives, enhancing their application in fields such
as control theory and biological systems. These derivatives enable accurate modeling of dy-
namic systems by incorporating memory effects and historical influences [8,9,14,15] Building
on the examination and findings related to the discussed issues, this research investigates
the existence and uniqueness of solutions to the following nonlinear fractional differential
equations boundary value problem using multi-fractional derivatives:

ε CDγuptq ´ RLDαuptq “f

ˆ

t, uptq, upλtq,

ż t

0
gpt, s, upsqqds

˙

, t P r0, 1s “ J, (1.1)

up0q “0, u1p1q “ 0, ε ą 0. (1.2)

Here, CDγ represents the Caputo derivative (CD) of fractional order γ with 1 ă γ ă 2, while
RLDα denotes the Riemann-Liouville(RL) derivative of fractional order α with 0 ă α ă 1
and λ P p0, 1q. Let f : J ˆ R ˆ R ˆ R Ñ R, g : J ˆ J ˆ R Ñ R be continuous functions.

• Problem and Approach:
We examine boundary value problems for fractional pantograph integrodifferential
equations involving multi-fractional derivatives, specifically Caputo and Riemann-
Liouville.

Action: Introduce the specific problem and the types of fractional derivatives being
considered.

• Existence and Uniqueness:
The existence of solutions is established using Krasnoselskii’s fixed point theorem,
while the uniqueness is proven via the Banach contraction mapping principle.

Action: Clearly state the methods used to demonstrate both the existence and unique-
ness of the solutions.

• Example for Validation:
An example is presented to verify the theoretical results and illustrate their practical
relevance.

Action: Mention the inclusion of an example to validate the theoretical findings and
demonstrate their practical applicability.

The remainder of this paper is structured as follows: Section 2 provides the essential
definitions and the fundamental tools that will be utilized in the following sections. Section
3 establishes and solves the different conditions for the existence and uniqueness of solutions
for multi-fractional derivatives. Finally, a specific example is included to illustrate the results
obtained.
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2. Preliminaries

In this section, we introduce essential definitions, lemmas, and theorems required to establish
the main results.

Definition 2.1. The RL fractional integral of order γ ą 0 for a function f : ra, bs Ñ R
evaluated at a point t is given by the following definition:

Iγa fptq “

ż t

a

pt´ τqγ´1

Γpγq
fpτq dτ,

where Γ represents the Gamma function, assuming the right-hand side is defined at each
point.

Definition 2.2. The RL fractional derivative of order γ ą 0 for a function f : ra, bs Ñ R
at a point t is defined by:

Dγ
a fptq “

1

Γpn´ γq

dn

dtn

ż t

a

pt´ τqn´γ´1

Γpn´ γq
fpτq dτ,

where n “ rγs ` 1 and rγs denotes the integer part of γ, assuming the right-hand side is
point-wise defined.

Definition 2.3. The Caputo derivative of fractional order γ for a function f : ra, bs Ñ R
that is n-times differentiable is defined as:

CDγ
a fptq “

1

Γpn´ γq

ż t

a
pt´ τqn´γ´1

ˆ

d

dτ

˙n

fpτq dτ,

where n “ rγs ` 1 and γ ą 0.

Remark 2.4. Assume 0 ă γ ď 1 and m “ rγs ` 1. If xptq P Cmr0, 1s, then

CIγa
CDγ

axptq “ xptq ´ xp0q.

Theorem 2.5. (Krasnoselskii’s Fixed Point Theorem): Let M be a closed, convex, and
bounded nonempty subset of a Banach space X. Consider two operators P and Q that
satisfy the following criteria:

• Px`Qy P M for all x, y P M ;

• Q is a contraction mapping;

• P is both compact and continuous.

Then, there exists an element γ P M such that the equation γ “ Pγ `Qγ is satisfied.

Theorem 2.6. (Contraction Mapping Principle): Let M be a Banach space. If T :M Ñ M
is a contraction, then T possesses a unique fixed point in M .
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3. Main Results

This section will demonstrate the existence and uniqueness of a solution for problem p1.1q ´

p1.2q in the Banach space C by utilizing the Banach contraction principle and the Kras-
noselskii fixed point theorem. We will first examine the fundamental assumptions required
for the forthcoming analysis:

(A1) Let fpCpr0, 1s,Rqq represent the Banach space consisting of all continuous functions
that map the interval J to R, endowed with the norm defined by

}u} “ supt|uptq| : t P Ju.

(A2) There exist constants L ,L1,L2 ą 0 such that

|f pt, x1, x2, x3q ´ f pt, x˚
1 , x

˚
2 , x

˚
3q | ďL1p|x1 ´ x˚

1 | ` |x2 ´ x˚
2 | ` |x3 ´ x˚

3 |q,

|g pt, s, x1q ´ g pt, s, x˚
1q | ďL2p|x1 ´ x˚

1 |q,

|f pt, x1, x2, x3q | ď L .

for all xi, x˚
i P R, for i “ 1, 2, 3, and t P J .

(A3) For each η˚ ą 0, let B˚
η be defined as the set Bη˚ “ tu P CpJ,Rq, }u} ď η˚u. It is

evident that Bη˚ is a bounded, closed, and convex subset of CpJ,Rq.

Lemma 1. The solution to the BVPs p1.1q ´ p1.2q satisfies the integral equation as follows:

uptq “
1

ε
Iγ´αuptq `

1

ε
Iγf

ˆ

t, uptq, upλtq,

ż t

0
gpt, s, upsqqds

˙

´
1

ε
Iγ´α´1up1q

´
1

ε
Iγ´1f

ˆ

1, up1q, upλ1q,

ż 1

0
gp1, s, upsqqds

˙

. (3.1)

Proof. From Equation (1.1), we have

CDγuptq “
1

ε
RLDαuptq `

1

ε
f

ˆ

t, uptq, upλtq,

ż t

0
gpt, s, upsqqds

˙

.

By applying the RL fractional integral of order γ to both sides, we obtain

uptq ´ up0q “
1

ε
Iγ´αuptq `

1

ε
Iγf

ˆ

t, uptq, upλtq,

ż t

0
gpt, s, upsqqds

˙

` a1 ` a2u

uptq “
1

ε
Iγ´αuptq `

1

ε
Iγf

ˆ

t, uptq, upλtq,

ż t

0
gpt, s, upsqqds

˙

` a1 ` a2u. (3.2)

Thus, the condition up0q “ 0 implies that a1 “ 0. Then,

uptq “
1

ε
Iγ´αuptq `

1

ε
Iγf

ˆ

t, uptq, upλtq,

ż t

0
gpt, s, upsqqds

˙

` a1 ` a2u.



126

Existence of Solutions for Boundary Value Problems of ...

By differentiating both sides, we obtain:

u1ptq “
1

ε

d

dt
Iγ´αuptq `

1

ε

d

dt
Iγf

ˆ

t, uptq, upλtq,

ż t

0
gpt, s, upsqqds

˙

` a2.

Using the boundary condition u1p1q “ 0 in the equation mentioned earlier, we derive

a2 “ ´
1

ε
Iγ´α´1up1q ´

1

ε
Iγ´1f

ˆ

1, up1q, upλ1q,

ż 1

0
gp1, s, upsqqds

˙

.

By inserting the values of a1 and a2 into Equation (3.2), we derive:

uptq “
1

ε
Iγ´αuptq `

1

ε
Iγf

ˆ

t, uptq, upλtq,

ż t

0
gpt, s, upsqqds

˙

´
1

ε
Iγ´α´1up1q

´
1

ε
Iγ´1f

ˆ

1, up1q, upλ1q,

ż 1

0
gp1, s, upsqqds

˙

.

Next, we shall prove the existence of a solution to the problem by applying Krasnoselskii’s
fixed point theorem.

Theorem 3.1. Suppose that conditions pA1q ´ pA3q hold, and if N1 ă 1, then the BVPs
p1.1q ´ p1.2q possesses at least one solution in CpJ,Rq.

Proof. In order to demonstrate that the problem p1.1q ´ p1.2q has a solution, we are going
to illustrate the proof by taking into consideration the subsequent steps:
Step 1: We shall define two operators A1 and A2, as follows for any constant ε ą 0:

A1 “
1

ε
Iγ´αuptq (3.3)

A2 “
1

ε
Iγf

ˆ

t, uptq, upλtq,

ż t

0
gpt, s, upsqqds

˙

´
1

ε
Iγ´1f

ˆ

1, up1q, upλ1q,

ż 1

0
gp1, s, upsqqds

˙

´
1

ε
Iγ´α´1up1q. (3.4)

Next, we will demonstrate that the operator A1 ` A2 “ A is bounded as follows:

|A uptq| ď
1

εΓpγ ´ αq

ż t

0
pt´ τqγ´α´1|upτq|dτ

`
1

εΓpγq

ż t

0
pt´ τqγ´α´1

ˇ

ˇ

ˇ

ˇ

f

ˆ

τ, upτq, upλτq,

ż τ

0
gpτ, s, upsqqds

˙ˇ

ˇ

ˇ

ˇ

dτ

`
1

εΓpγ ´ αq

ż t

0
pt´ τqγ´α´1|up1q|dτ

`
1

εΓpγq

ż t

0
pt´ τqγ´α´1

ˇ

ˇ

ˇ

ˇ

f

ˆ

1, up1q, upλ1q,

ż 1

0
gp1, s, upsqqds

˙ˇ

ˇ

ˇ

ˇ

dτ,

ď
η˚

ε Γpγ ´ α ´ 1q
`

L

ε Γpγq
`

|xp1q|

Γpγ ´ αq
`

ˇ

ˇ

ˇ
f
´

1, up1q, upλ1q,
ş1
0 gp1, s, upsqqds

¯ˇ

ˇ

ˇ

Γpγq
.
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By taking the supremum on both sides, we get:

}A u} ď
M

ε
,

where M “
η˚

Γpγ ´ α ´ 1q
`

L

Γpγq
`

|xp1q|

Γpγ ´ αq
`

ˇ

ˇ

ˇ
f
´

1, up1q, upλ1q,
ş1
0 gp1, s, upsqqds

¯
ˇ

ˇ

ˇ

Γpγq
. There-

fore, the operator A is bounded.
Step 2: Contraction.

|A1uptq ´ A1vptq| ď

ˇ

ˇ

ˇ

ˇ

1

ε
Iγ´αuptq ´

1

ε
Iγ´αvptq

ˇ

ˇ

ˇ

ˇ

ď
1

εΓpγ ´ αq

ż t

0
pt´ τqγ´α´1|upτq|dτ ´

1

εΓpγ ´ αq

ż t

0
pt´ τqγ´α´1|vpτq|dτ

ď
1

εΓpγ ´ αq

ż t

0
pt´ τqγ´α´1|upτq ´ vpτq|dτ.

Taking the supremum on both sides yields:

}A1u´ A1v} ď
1

εΓpγ ´ αq

ż t

0
pt´ τqγ´α´1}u´ v}dτ

ď
}u´ v}

εΓpγ ´ α ` 1q

ďN1}u´ v},

where N1 “
1

εΓpγ ´ α ` 1q
. Therefore, the operator A1 is a contraction.

Step 3: To prove the complete continuity of the operator A2, it is crucial to show both its
continuity and equicontinuity. By establishing these two properties, we can

|A2unptq ´ A2uptq| ď
1

εΓpγ ´ αq

ż t

0
pt´ τqγ´α´1|unpτq ´ upτq|dτ

`
1

εΓpγq

ż t

0
pt´ τqγ´α´1

ˇ

ˇ

ˇ

ˇ

ˇ

f

ˆ

τ, unpτq, unpλτq,

ż τ

0
gpτ, s, unpsqqds

˙

´f

ˆ

τ, upτq, upλτq,

ż τ

0
gpτ, s, upsqqds

˙

ˇ

ˇ

ˇ

ˇ

ˇ

dτ

`
1

εΓpγ ´ αq

ż t

0
pt´ τqγ´α´1|unp1q ´ up1q|dτ

`
1

εΓpγq

ż t

0
pt´ τqγ´α´1

ˇ

ˇ

ˇ

ˇ

ˇ

f

ˆ

1, unp1q, unpλ1q,

ż 1

0
gp1, s, unpsqqds

˙

´f

ˆ

1, up1q, upλ1q,

ż 1

0
gp1, s, upsqqds

˙

ˇ

ˇ

ˇ

ˇ

ˇ

dτ
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ď
1

εΓpγ ´ αq

ż t

0
pt´ τqγ´α´1|unpτq ´ upτq|dτ

`
1

εΓpγq

ż t

0
pt´ τqγ´α´1L1p|unpτq ´ upτq| ` |unpλτq ´ upλτq|

`L2|unpτq ´ upτq|qdτ

`
1

εΓpγ ´ αq

ż t

0
pt´ τqγ´α´1|unp1q ´ up1q|dτ

`
1

εΓpγq

ż t

0
pt´ τqγ´α´1L1p|unp1q ´ up1q| ` |unpλ1q ´ upλ1q|

`L2|unpτq ´ upτq|qdτ.

Taking the supremum on both sides yields:

}A2un ´ A2u} ď
1

εΓpγ ´ αq

ż t

0
pt´ τqγ´α´1}un ´ u}dτ

`
1

εΓpγq

ż t

0
pt´ τqγ´α´1L1p}un ´ u} ` }un ´ u} ` L2}un ´ u}qdτ

`
1

εΓpγ ´ αq

ż t

0
pt´ τqγ´α´1}un ´ u}dτ

`
1

εΓpγq

ż t

0
pt´ τqγ´α´1L1p}un ´ u} ` }un ´ u} ` L2}un ´ u}qdτ

ď
1

ε

„

L1p2 ` L1q

Γpγ ` 1q
`

1

Γpγ ´ αq
`

L1p2 ` L1q

Γpγq

ȷ

}un ´ u}.

As un Ñ u as n Ñ 8. Hence, A2 is continuous.
Step 4: We shall then prove that A2 is an equicontinuous operator.

|A upt2q ´ A upt1q| ď
1

εΓpγ ´ αq

ż t2

0
pt2 ´ τqγ´α´1|upτq|dτ

`
1

εΓpγq

ż t2

0
pt2 ´ τqγ´α´1

ˇ

ˇ

ˇ

ˇ

ˇ

f

ˆ

τ, upτq, upλτq,

ż τ

0
gpτ, s, upsqqds

˙

ˇ

ˇ

ˇ

ˇ

ˇ

dτ

`
1

εΓpγ ´ αq

ż t2

0
pt2 ´ τqγ´α´1|unp1q ´ up1q|dτ

`
1

εΓpγq

ż t2

0
pt2 ´ τqγ´α´1

ˇ

ˇ

ˇ

ˇ

ˇ

f

ˆ

1, unp1q, unpλ1q,

ż 1

0
gp1, s, unpsqqds

˙

ˇ

ˇ

ˇ

ˇ

ˇ

dτ

´
1

εΓpγ ´ αq

ż t1

0
pt1 ´ τqγ´α´1|upτq|dτ

´
1

εΓpγq

ż t1

0
pt1 ´ τqγ´α´1

ˇ

ˇ

ˇ

ˇ

ˇ

f

ˆ

τ, upτq, upλτq,

ż τ

0
gpτ, s, upsqqds

˙

dτ

ˇ

ˇ

ˇ

ˇ

ˇ
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´
1

εΓpγ ´ αq

ż t1

0
pt1 ´ τqγ´α´1|unp1q ´ up1q|dτ

´
1

εΓpγq

ż t1

0
pt1 ´ τqγ´α´1

ˇ

ˇ

ˇ

ˇ

ˇ

f

ˆ

1, unp1q, unpλ1q,

ż 1

0
gp1, s, unpsqqds

˙

ˇ

ˇ

ˇ

ˇ

ˇ

dτ

ď
1

εΓpγ ´ αq

ż t1

0
ppt2 ´ τqγ´α´1 ´ pt1 ´ τqγ´α´1q|upτq|dτ

`
1

εΓpγ ´ αq

ż t2

t1

pt2 ´ τqγ´α´1|upτq|dτ

`
1

εΓpγq

ż t2

t1

ppt2 ´ τqγ´α´1q

ˇ

ˇ

ˇ

ˇ

ˇ

f

ˆ

τ, upτq, upλτq,

ż τ

0
gpτ, s, upsqqds

˙

ˇ

ˇ

ˇ

ˇ

ˇ

dτ

`
1

εΓpγq

ż t1

0
ppt2 ´ τqγ´α´1 ´ pt1 ´ τqγ´α´1q

ˇ

ˇ

ˇ

ˇ

ˇ

f

ˆ

τ, upτq, upλτq,

ż τ

0
gpτ, s, upsqqds

˙

ˇ

ˇ

ˇ

ˇ

ˇ

dτ

`
1

εΓpγ ´ αq

ż t1

0
ppt2 ´ τqγ´α´1 ´ pt1 ´ τqγ´α´1q|unp1q ´ up1q|dτ

`
1

εΓpγ ´ αq

ż t2

t1

ppt2 ´ τqγ´α´1q|unp1q ´ up1q|dτ

`
1

εΓpγq

ż t1

0
ppt2 ´ τqγ´α´1 ´ pt1 ´ τqγ´α´1q

ˇ

ˇ

ˇ

ˇ

ˇ

f

ˆ

1, unp1q, unpλ1q,

ż 1

0
gp1, s, unpsqqds

˙

ˇ

ˇ

ˇ

ˇ

ˇ

dτ

`
1

εΓpγq

ż t2

t1

ppt2 ´ τqγ´α´1q

ˇ

ˇ

ˇ

ˇ

ˇ

f

ˆ

1, unp1q, unpλ1q,

ż 1

0
gp1, s, unpsqqds

˙

ˇ

ˇ

ˇ

ˇ

ˇ

dτ.

As t2 approaches t1, the right-hand side of the inequality above converges to zero. Therefore,
the operator A2 is equicontinuous. Since all the conditions of Krasnoselskii’s fixed point
theorem are fulfilled, especially the existence of a fixed point, this concludes the proof.

Theorem 3.2. Assume that (A2) is hold. If
1

ε

„

L1p2 ` L1q

Γpγ ` 1q
`

1

Γpγ ´ αq
`

L1p2 ` L1q

Γpγq

ȷ

ă

1, then, problem p1.1q ´ p1.2q, has a unique solution.

Proof. First, we define the operator T .

Tuptq “
1

ε
Iγ´αuptq `

1

ε
Iγf

ˆ

t, uptq, upλtq,

ż t

0
gpt, s, upsqqds

˙

´
1

ε
Iγ´α´1up1q

´
1

ε
Iγ´1f

ˆ

1, up1q, upλ1q,

ż 1

0
gp1, s, upsqqds

˙

.

Next, we will employ the Banach contraction mapping theorem to establish the uniqueness
of T .
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|Tuptq ´ Tvptq| ď
1

εΓpγ ´ αq

ż t

0
pt´ τqγ´α´1|upτq ´ vpτq|dτ

`
1

εΓpγq

ż t

0
pt´ τqγ´α´1

ˇ

ˇ

ˇ

ˇ

ˇ

f

ˆ

τ, upτq, upλτq,

ż τ

0
gpτ, s, upsqqds

˙

´f

ˆ

τ, vpτq, vpλτq,

ż τ

0
gpτ, s, vpsqqds

˙

ˇ

ˇ

ˇ

ˇ

ˇ

dτ

`
1

εΓpγ ´ αq

ż t

0
pt´ τqγ´α´1|up1q ´ vp1q|dτ

`
1

εΓpγq

ż t

0
pt´ τqγ´α´1

ˇ

ˇ

ˇ

ˇ

ˇ

f

ˆ

1, up1q, upλ1q,

ż 1

0
gp1, s, upsqqds

˙

´f

ˆ

1, vp1q, vpλ1q,

ż 1

0
gp1, s, vpsqqds

˙

ˇ

ˇ

ˇ

ˇ

ˇ

dτ

ď
1

εΓpγ ´ αq

ż t

0
pt´ τqγ´α´1|upτq ´ vpτq|dτ

`
1

εΓpγq

ż t

0
pt´ τqγ´α´1L1p|upτq ´ vpτq| ` |upλτq ´ vpλτq|

`L2|upτq ´ vpτq|qdτ

`
1

εΓpγ ´ αq

ż t

0
pt´ τqγ´α´1|up1q ´ vp1q|dτ

`
1

εΓpγq

ż t

0
pt´ τqγ´α´1L1p|up1q ´ vp1q| ` |upλ1q ´ vpλ1q|

`L2|upτq ´ vpτq|qdτ.

Taking the supremum on both sides yields:

}Tu´ Tv} ď
1

εΓpγ ´ αq

ż t

0
pt´ τqγ´α´1}u´ v}dτ

`
1

εΓpγq

ż t

0
pt´ τqγ´α´1L1p}u´ v} ` }u´ v} ` L2}u´ v}qdτ

`
1

εΓpγ ´ αq

ż t

0
pt´ τqγ´α´1}u´ v}dτ

`
1

εΓpγq

ż t

0
pt´ τqγ´α´1L1p}u´ v} ` }u´ v} ` L2}u´ v}qdτ

ď
1

ε

„

L1p2 ` L1q

Γpγ ` 1q
`

1

Γpγ ´ αq
`

L1p2 ` L1q

Γpγq

ȷ

}u´ v}.

Upon examining the circumstances, it is evident that the conditions of the Banach contrac-
tion principle are met, allowing us to deduce that a unique fixed point exists for the specified
problem.
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4. Example

Consider the problem

11

100
CD3{2uptq ´ RLD2{3uptq “

cosuptq

5

et

1 ` et
` upλtq

et

1 ` et
`

ż t

0

es

1 ` es
upsqds, t P r0, 1s,

(4.1)

up0q “0, u1p1q “ 0. (4.2)

Here
α “

2

3
, γ “

3

2
, ε “

11

100
,

f

ˆ

t, uptq, upλtq,

ż t

0
gpt, s, upsqqds

˙

“
cosuptq

5

et

1 ` et
` upλtq

et

1 ` et
`

ż t

0

es

1 ` es
upsqds.

It is clear that

|f pt, x1, x2, x3q ´ f pt, x˚
1 , x

˚
2 , x

˚
3q | ď

et

1 ` et
p|x1 ´ x˚

1 | ` |x2 ´ x˚
2 | ` |x3 ´ x˚

3 |q,

|g pt, s, x1q ´ g pt, s, x˚
1q | ď

et

1 ` et
p|x1 ´ x˚

1 |q,

for all xi, x˚
i P R, for i “ 1, 2, 3, and t P J , which satisfies condition (A2). Here L “ et

1`et ă

1. Therefore, by applying the concept of uniqueness and using the Lipschitz condition,

1

ε

„

L1p2 ` L1q

Γpγ ` 1q
`

1

Γpγ ´ αq
`

L1p2 ` L1q

Γpγq

ȷ

ă 0.5448 ă 1.

Based on our analysis, we can infer that the boundary value problem p4.1q ´ p4.2q has a
unique solution.

5. Conclusion

This research study delves into the analysis of nonlinear multifractional differential equa-
tions, with a particular emphasis on mixed fractional differential equation BVPs. To demon-
strate existence findings, the study uses Krasnoselskii’s fixed point theorem, while a unique-
ness theorem is derived using the Banach contraction mapping principle. Furthermore, the
use of an exemplary example confirms the validity of the acquired results.
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