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Abstract
Different cases of supports systems were critically reviewed in this research. The work centered on uniformly

supported plate. Odd energy functional was adopted. Considering two different rectangular thin isotropic plate
elements, under the influence of external (load). The first case was simply supported all round while the other
plate arrangement was Clamped all round. The shape functions, 3rd order strain energy equation and external
load parameter were formulated from first principle after several minimization. The second case gave rise to the
Third Order Overall Potential Energy Functional. Integrating the Total Energy functional with respect to the
amplitude produced the Governing equation. Introduction of different coefficients explained the extent of their
stiffnesses that were formulated. The Third order strain energy equation was also derived, and further
minimization of the third order strain energy gave the Third Order Overall Potential Energy Functional. Next to
this was the derivation of the critical buckling load equations which was gotten by further minimizing the
governing equation. Aspect ratios of different values were substituted into the critical equation though this was
done at different value interval. The non-dimensional buckling load parameters were obtained at arithmetic
difference of 1/10. The results gotten in both cases were as detailed below.
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THIRD ORDER ENERGY FUNCTIONAL FOR THE PLATES

The two uniformly supported plate under consideration in the research work are simple-simple-simple
simple and clamped-clamped-clamped-clamped rectangular plates. The displacements of a thin rectangular
plate include in-plane displacements — u and v and out of plane displacement— w. Considering u and v as the
functions of x, y and z, w is only a function of x and y and so X, y and z are the principal coordinates. The
implication of this is that w is constant along z direction. This is in consonant with the assumption that-—
“vertical normal strain of a plate is equal to zero”. The vertical shear strains are negligible in classical plate
analysis and assumed to be equal to zero. Thus, out of the six engineering strain components, &, ¥x, and ¥y, were
assumed to be zero. Therefore, leaving only three engineering strain components - &x, -gy, and yxy, upon the
minimization of the strain deflection.

I Methods
The stress, strain, shear tress, shear strain and the deflection were considered at different conditions,
from the constitutive relations were formed. The strain energy was directly integrated to form the fundamental
for the formulation of the needed functional. These properties were further introduced by substitution and this
gave rise to the flexural rigidity. When the derived strain energy was added to the external work done, the
overall potential energy, T, was derived. The stages involved were as detailed below,

. ou 2%w
Having proved that, 3~ Zoxay 1
According to already established work,
and also that
v 2*w )
ox Zaxay

That means
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3 2%w ’’w ) 2w 3
Ty = Zaxay Zaxay h Zaxay
and stress strain relationship, the stress deflection relationship were formulated
—Ez
Oy = 1_—u2(Tx) 4
where
2w 2w
Tx 9x2 u’ ayz 5
similarly
—Ez
O'y = 1- IJ'Z (Ty) 6
. 82W+ 0%w .
y = W52 y?

The product of stress and strain at every point on the plate continuum were added together
and that gave Equation 8

OxExt Oy &y + Tyy ¥yy = OF 8

Substituting and minimizing further gives the 3™ Strain energy equation as

D ra b
Eu = Ef f (Eul + ZEuz + Eu3) dXdy 9
0 Y0
where
2w ow 3

—.—=E 10
0x3’ 9x ul

also

3w ow
A 11
ax dy? = 9x

and
Bw aw _

Introducing the external work done and the overall potential energy, gives

A%2D ra b A’Nx 0%h
Tp = _f f (Euhl + 2Euh2 + Euh3) dXdy - f f 22" thdy 13
2 Jy ) 2 dx

a3h oh 3h  oh a3h oh

E = —. .— E and E =—.— 14
uhl ™ 53" 9x ’ oxdy? ox uh2 uh3 ™ 543" 5y

Differentiating the Total Potential energy with respect to the Amplitude
and further substitutions gives

2AD

_ 2

1,1

Jo Jo- (Eunt+ 2Eypy + Eyps)dxdy
2A fa b ( 9h)?
Zh 1 (E) dxdy

further reducing Equation 15 gives

15

ct
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B, =

Where

1 1 D

16

The first buckling coefficient is

1 1
0 Yo

The second buckling coefficient is

1 r1
Ct2 = f f (Euhz)deQ 18
0 Yo

The The third buckling coefficient is

1,1
Ct3 = f f (Euh3)deQ 19
0 Yo

While the fourth critical buckling coefficient is

1 ,1 ah
ct =f f (=)? dRdQ 20
* ), ), aR

Buckling Load Equation for SSSS shape

The critical buckling load equation for SSSS can be written in terms of stiffness coefficients

(cty, ct, ctzand ct) using the a? = b?/p?, for the

aspect ratio of p = b/a as follows

B =

2 1
D (Ctl + p_zctz + p—4Ct3)

21
ctga?

| Buckling Load Equation for CCCC shape
Substituting the stiffness coefficients (cty, cty, ctz and ctg) for the CCCC plate, into the general buckling load

equation, the critical buckling load equation the plate can be expressed as

2
D(Ctl + ;Ctz + p_14.Ct3)

Bere = k6a2 22

Considering a2 = b%p?, for p = b/a as the aspect ratio.

Determination of the Stiffness coefficients of the plates

From the Polynomial rules, the shape function of the shape function, sh for SSSS Plate

is as (R-2R3+R%) (Q-2Q3+Q*% 23

Differential values for Simple-Simple-Simple-Simple shape

Tthe shape functions were differentiated at different levels and that gave
sh=(R—-2R*+RH)(Q-2Q3+QH 24

dsh

Sr = (1—6R* +4RH(Q-2Q° + QY 25

Differentiating Equation 25 with respect to R twice gives
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0%sh
0R?

= (=12R + 12R?)(Q — 2Q3 + Q%) 26

Differentiating Equation 24 with respect to R thrice gives

d3sh
OR3

= (—12 4+ 24R)(Q — 2Q® + Q%) 27

Differentiating Equation 24 with respect to Q gives

%: (R — 2R3 + R)(1 — 6Q2 + 4Q3) 28

Differentiating Equation 24 with respect to Q twice gives

9%sh
Q2

= (R — 2R3 + R")(=12Q + 12Q?) 29

Differentiating Equation 24 with respect to Q thrice gives

93sh s . oa
307 = R—2R+RO(-12 +24Q) 30

Buth with respect to R and Q gives

0%sh
9R3Q

= (1 — 6R% + 4R3)(1 — 6Q2 + 4Q3) 31

Similarly with respect to R and twice Q gives

93sh 5 s )
3sh s .
—r5 = (-12+ 24R)(Q - 2Q° +4Q) 28
a3l d3sh 0dsh 29
= — % —
dR3 OR
" 03sh  0Osh 30
= % —
dR0Q? OR
3 03sh dsh 31
= — % —
2Q3 0Q
___ 0%*sh
Ct6 = 32

Combining and multiplying from the expressions above gives,
(—12 4 24R)(Q — 2Q® + QM)x(1 — 6R* + 4R?*)(Q — 2Q* + Q%)

Collecting the like terms together yields

(=12 + 24R)(1 — 6R% + 4R®) x (Q — 2Q3 + QH)(Q — 2Q3 + Q%)
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and multiplying out each bracket gives

—12(1 — 6R? + 4R3) + 24R(1 — 6R? + 4R3) x Q(Q — 2Q3 + Q%) — 2Q3(Q — 2Q3 + Q%)
+Q*(Q-2Q° +QY

which finally changes to

(—12 + 72R? — 48R® + 24R — 144R® + 96R)x(Q? — 2Q* + Q° —2Q*+4Q° — 2Q” + Q° —2Q” + Q®)

93sh  dsh
*_
OR3

x (Q% — 4Q* + 2Q° +4Q°— 4Q” + Q®) 33

Therefore

= (—12 + 24R + 72R? — 192R3 + 96R*)

03sh  dsh

But cti = [[Crt1dRdQ =JI5-5 * =~ dRdQ

That implies that cr; = fo fo (=12 + 24R + 72R? — 192R® + 96R*) x

(Q% — 4Q* + 2Q°+4Q°—4Q7 + QB)deQ 34
—12R 24R2 72R3  192R* 96R5 4Q5 2Q3  4qQ’ 4Q8
= (22— Ty x & L4104 Sypp
192 4 2 4
= (24T T DXG g o)

Therefore ct; = (—4 )X(E) _512254

also,
From Equation 30 comes (1 — 6R% + 4R3)(—12Q + 12Q?) x (1 — 6R? + 4R®*)(Q — 2Q% + Q%)
Bringing the similar terms together gives

= (1 — 6R% + 4R3)(1 — 6R? + 4R3) x (—12Q + 12Q?)(Q — 2Q3+Q%)
and multiplying out each bracket gives

=1(1 — 6R? + 4R3) — 6R2(1 — 6R? + 4R3) + 4R3(1 — 6R%Z + 4R3) X
—-12Q(Q —2Q* +Q*) + 12Q*(Q — 2Q* + Q")
which finally changes to

(1 — 6R? + 4R3 — 6R? + 36R* — 24R5 + 4R® — 24R5 + 16R®)x (—12Q% + 24Q*—12Q5+12Q3 — 24Q5
+12Q%)

= (1 — 12R? + 8R3 4 36R* — 48R5 + 16R®)x (—12Q%+12Q3 + 24Q* — 36Q° + 12Q°)

_h_oh _ 1 _19R2 3 4 _ 48RS 6
Therefore Ro0? “R = (1 —12R* + 8R® + 36R* — 48R> + 16R")x

(—12Q2+12Q3 + 24Q* — 36Q° + 12Q°) 35

93 h oh
aR3

That implies that crt, = fo fO (1 — 12R? 4+ 8R® + 36R* — 48R® + 16R®) x

But ct;=[[Ct2dRdQ = ][> » = dRdQ

(—12Q%+12Q3 + 24Q* — 36Q° + 12Q°%)dRdQ 36
12R® | 8R* 36R> 48R® = 16R’ —12Q 12Q%

UG+ T T X -

24Q% 36 6

5Q Q )]1]1

—(—+———+———+—)X(—+ —+ — ———)

3
-17 —289

Therefore kz:(gs) Gs) = T

also,
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from Equation 31 = (R — 2R3 + R*)(—12 + 24Q) x(R — 2R® + R*)(1 — 6Q2 + 4Q?)
Collecting the like terms together yields
(R—2R®+RH(R - 2R* + RY) x (12 + 24Q)(1 — 6Q2 + 4Q?)
and multiplying out each bracket, gives
=R(R — 2R® +R*) — 2R3(R — 2R3 + R*) + R*(R — 2R3 + RY)x — 12(1 — 6Q% + 4Q?)
+24Q(1 — 6Q% + 4Q3)
which finally changes to
(RZ — 2R* + R5 — 2R* + 4R® — 2R7 + R5 — 2R7 + R®)x (=12 + 72Q%—48Q3 + 24Q — 144Q3 + 96Q%)
=(R? — 4R* + 2R°® + 4R® — 4R7 + R®)x (—12 + 24Q+72Q% — 192Q3 + 96Q%)

Therefore 42753}1 « B0 — (R2 — 4R* + 2R5 + 4R® — 4R7 + R®)x (=12 + 24Q+72Q% — 192Q% + 96Q%)
93sh  dsh
But crt; =[[Crt3dRdQ = [[5 5 + - dRdQ

dR3

That implies that
ots =, [J(R? — 4R* + 2R® + 4R® — 4R” + R®)

x (=12 + 24Q+72Q% — 192Q3 + 96Q*)dRdQ 37
SO+ 5+ S x e B
" 5
+22L 4 B
Gl D R D
Therefore ks = (—) x (—4 —) = 2% also

525
( )2 = (1-6R% +4R3)(Q — 2Q% + QH)x(1 — 6R? + 4R®)(Q — 2Q3 + Q%)
Collecting the like terms together yields
(1 —6R? +4R3)(1 — 6RZ + 4R®*)x(Q — 2Q3 + QH)(Q — 2Q% + Qb

and multiplying out each bracket gives
1(1 — 6R? + 4R3) — 6R2(1 — 6R? + 4R3) + 4R3(1 — 6R% + 4R®)x Q(Q — 2Q3 + Q%) — 2Q3(Q — 2Q3 +
QM) +Q"(Q—-2Q*+ QY
= (1 — 6R? 4+ 4R3 — 6R? + 36R* — 24R5 + 4R3 — 24R5 + 16R®)x(Q% — 2Q* + Q% — 2Q* +4Q° —2Q” +
Q°-2Q"+Q%»
which finally changes to

(1 — 12R? + 8R® + 36R* — 48R5 + 16R®)x(Q? — 4Q* + 2Q° + 4Q° — 4Q” + Q%)
Therefore( ) =(1 — 12R? + 8R® + 36R* — 48RS + 16R%)x

(@ —4Q* + 2Q° +4Q° —4Q” + Q%)

But crts =[] Cre6dRdQ = H(@) dRdQ

That implies that crts = fo fo (1 —12R? 4+ 8R® + 36R* — 48R + 16R®) x
(Q2 —4Q*+ 2Q°+4Q°—-4Q" + QB)deQ47

12R3  8R* = 36R° 48R6 16R7 4Q5 2Q°

=[G B+ 2 O x & :
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4Q7  4Q® | Q%\qim1
+— == 1]

=l 12,83 48 16, 1 4, 2 4 4 Lym
_[[(1 3+4+5 6+7)X(3 5+6+7 8+9)]]

Therefore crtg = (g) X (%) = 222;0

Similarly from Polynomial rules, the shape function, sh for CCCC panel

is (R>-2R3+R*) (Q2-2Q%+Q?) 38
Differential values for Clamped-Clamped-Clamped-Clamped shape

Also the various differential values for CCCC shape functions are as detail
sh = (R? = 2R3 + R)(Q%? — 2Q3 + QY 39

Differentiating Equation 39 with respect to R gives

dsh
R - (2R — 6R? + 4R3)(Q? — 2Q% + QY 40
Differentiating Equation 39 with respect to R twice gives

9%sh
O0R?

= (2 —12R 4+ 12R?)(Q% — 2Q3 + Q%) 41

Differentiating Equation 39 with respect to R thrice gives

d23sh
O0R3

= (=12 + 24R)(Q% — 2Q3 + Q%) 42

Differentiating Equation 39 with respectto Q gives

% = (R? — 2R® + RH)(2Q — 6Q?% + 4Q3) 43

Differentiating Equation 39 with respect to Q twice gives

0%sh

202

Differentiating Equation 39 with respect to Q thrice gives

= (R — 2R3 + RY)(2 — 12Q + 12Q?) 44

03sh
Q3

= (R? — 2R® + R*)(—12 + 24Q) 45

Differentiating Equation 39 with respect to Q thrice gives

o°sh _ (2R — 6R? + 4R%)(2Q — 6Q2 + 4Q%)56
RIQ Q—-6Q Q
d93sh X s X
3Ragz = @R 6R* +4R)(2 — 120 +12¢) 46
il d3sh dsh 47
- *
9R® " OR
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——= _ 03sh «0sh
Ct2 = R0 3R 48
3 9%h 0dsh 49
= — % —
2Q3 09Q
—— _ 09%sh dsh, 5
Crt6 = 7Y or(ﬁ) 61

From the expressions above,

aSSh aSh — 2 3 4 2 3 2 3 4
m5 * o = (7124 24R)(Q° — 2Q% + Q1) x (2R — 6R® + 4R°)(Q” — 2Q° + Q")

Collecting the like terms together yields

(=12 4 24R)(2R — 6R? + 4R3) x (Q2 — 2Q3 + QH)(Q? — 2Q3 + QY
and multiplying out each bracket gives
—12(2R — 6R? + 4R3) + 24R(2R — 6R? + 4R3) x Q2(Q% — 2Q3 + Q%)
—2Q%(Q* - 2Q% + QM)+ Q*(Q* - 2Q* + QY
= (—24R + 72R? — 48R3 + 48R? — 144R3 + 96R*)

x(Q* —2Q° +Q°-2Q° +4Q° - 2Q7 +Q° - 2Q” + Q%)

which finally changes to

(—24R + 120R? — 192R3 + 96R*)x(Q* — 4Q5 + 6Q° — 4Q7 + Q?)

Therefore 2%+ 20 — (_24R + 120R? — 192R? + 96R)x(Q* — 4Q° + 6Q° — 4Q” + Q)

But crt; =[[Crt1dRdQ = ng%’; + 2L dRdQ

That implies that

cti= [} f, (—24R + 120R? — 192R? + 96R*) x(Q* — 4Q° + 6Q° — 4Q7 + Q®)dRdQ 50
= [[( —z;,R2 +122R3 _ 19iR4 n 965R5) < (Q?S _ 4_(626 n g _g_i_ %9)]1]1
S e

Therefore

cty = (—g) X (6;—0) = %also,

:;ngz * % = (2R — 6R? + 4R3)(2 — 12Q + 12Q?)X(2R — 6R? + 4R®)(Q? —2Q% + Q%)

Collecting the like terms together yields

= (2R — 6R? 4+ 4R%)(2R — 6R? + 4R%) x (2 — 12Q + 12Q3)(Q% — 2Q3 + Q%)
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and multiplying out each bracket gives
2Rx 2(Q* —2Q* + Q") — 12Q(Q* —2Q* + Q") + 12Q%(Q* — 2Q* + Q%)
= (4R% — 12R3 + 8R* — 12R3 4 36R* — 24R5 + 8R* — 24R® + 16R®)
x (2Q% — 4Q32Q*—12Q3+12Q* — 12Q° + 12Q* + 24Q° + 12Q°)
which finally changes to
(4R% — 24R3 4 52R* — 48R5 + 16R®)x(2Q% — 16Q3 + 38Q* — 36Q° + 12Q°)"
Therefore

93sh 0sh
* —
0R3 OR

= (4R% — 24R3 + 52R* — 48R5 + 16R%)x(2Q2 — 16Q° + 38Q* — 36Q° + 12Q°)

But ct,=J[ CrtzdrdQ = [|-2

,on
aR aQZ * 3R dRdQ

That implies that

cto= [ [ (4R? — 24R3 + 52R* — 48R® + 16R®) x (2Q? — 16Q* + 38Q* — 36Q° + 12Q°%)

dRdQ 51
_ [[(_ ﬂ*_@_w;ﬂ 16R8) ( 16Q4+ 385Q 36Q )]1]1
=(G-2 2T DxC- T+ 22 D)
Therefore Cl’tzz(lZE) (E) = Tiom
also,
‘76053’1 . ";h = (R? — 2R® + R (—12 + 24Q)x(R? — 2R® + R)(2Q — 6Q* + 4Q*)

Collecting the like terms together yields
(RZ — 2R3 + RY)(R? — 2R3 + RY) x (—12 + 24Q)(2Q — 6Q2 + 4Q3)
and multiplying out each bracket gives
RZ(R%? — 2R3 + R*) — 2R3(R?% — 2R% + R*) + R*(R? — 2R3 + R%)
x — 12(2Q — 6Q% + 4Q3) + 24Q(2Q — 6Q? + 4Q3)
= (R* — 2R5 4+ R® — 2R® + 4R® — 2R” + R6 — 2R’ + R®)
x (—24Q + 72Q%2-48Q3 + 48Q% — 144Q3 + 96Q*)
which finally changes to
(R* — 4R5 + 6R® — 4R7 + R®) x (—24Q + 120Q2-192Q3 + 96Q%)
Therefore

d3sh 0sh

20 * 30 = (R* — 4R° + 6R® — 4R” + R®) x (—24Q + 120Q2—192Q3 + 96Q*)
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But crts =[] Cre3dRdQ =] ‘3;;: 2 4RdQ
That implies that
cty = f01 fol(R4 — 4R5 + 6R® — 4R7 + R®) x (—24Q + 120Q2—-192Q3 + 96Q*)dRdQ 52
=[S -0 B (S 1200 120 500y
(——- -—-+ -) (— —~ ?—g )
Therefore crtz = (ﬁ) X (— g) = % = %

Also

(%:)2 = (2R —6R? + 4R?)(Q* — 2Q® + Q")x (2R — 6R* + 4R3*)(Q* — 2Q* + QY

Collecting the like terms together yields
(2R — 6R% + 4R3)(2R — 6R? + 4R3) x (Q% — 2Q3 + QH)(Q% — 2Q% + Q%)
and multiplying out each bracket gives
2R(2R — 6R? + 4R3) — 6RZ(2R — 6R? + 4R3) + 4R3(2R — 6R? + 4R3)
xQ*(Q% —2Q° + Q") - 2Q%(Q* —2Q* + Q") + Q*(Q* —2Q* + QY
= (4R? — 12R3 + 8R* — 12R3 4 36R* — 24R% + 8R* — 24R°® + 16R®)
x(Q* —2Q° +Q° —2Q° +4Q° - 2Q7 - Q° - 2Q” + Q%)
which finally changes to
(4R?% — 24R3 + 52R* — 48R5 + 16R®) x (Q* — 4Q° + 6Q° — 4Q” + Q%)

Therefore

dsh.

(5)° = (4R? — 24R® + 52R* — 48R° + 16R°) x (Q* — 4Q° + 6Q° —4Q” + Q%)

But crts = [ Crr6dRdQ = [I( 2)*dRdQ

That implies that

cts = [ [, (4R? — 24R® + 52R* — 48R° + 16R®) x(Q* — 4Q° + 6Q° — 4Q” + Q%)dRdQ >
- ﬁ _ 24R* + 52RS  48R® 16R7) ( 4Q6 &7 _® +Q_9)]1]1
5 6 ’ ’
4 1
= [[(___ ———+ —) (‘_ '+ __E +3)]1]1
Therefore crts = (105) X (5) ~ 56150
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. Results
When the stiffness coefficients were substituted into the critical buckling load equations the followings were
obtained

Table 1: Shape functions and stiffness coefficients

Shape Functions, sh Stiffness Coefficients
cty cty cts cts
SSSS = 0.236219 | = 0.23591 = 0.236219 = 0.02390
sh = (R-2R3+R4) x
(Q-2Q3+0Q4)
CCCC =0.00127 = 0.00036 = 0.00127 =0.00003
sh=(R? — 2R® + R*) x
(Q* —2Q°+Q%

Result for Simple-Simple-Simple-Simple plate

The non- dimensional buckling load parameters for SSSS plate are presented on Table 2.1 and 2.2 and

Figure.l.
Table 2.1 Non dimensional buckling load parameters for SSSS plate for aspect ratio of b/a
b/a 2 1.9 1.8 1.7 1.6
B 15.4371 16.111 16.9186 17.8983 19.1036
D Previous 15.43632 16.11018 16.91777 | 17.89753 19.10282
Bcrt(;)
Present 15.43632 16.11018 16.91777 | 17.89753 19.10282
Table 2.2
b/a 15 14 1.3 1.2 11 1
B 20.610 22.529 25.026 28.359 32.950 39.505
p LPrevious J 20.6103 22.5282 25.0256 28.357 32.9491 39.510
Bcrt(?)
Present | 20.6101 22.5281 25.0250 28.358 32.949 39.508
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N
o

N
o

o

2 19 18 17 0

15 14 13 Seriesl

13 1>

Critical Buckling Load Bcrt

1.1

Aspect Ratio
Figure 1.2: Buckling load against aspect ratio (SSSS ) Present

N ow B
OSOOO

2

19 13
17 16 15 14 13 Series1

13 41>

11

Critical Buckling Load Bcrt

Aspect Ratio

Figure 1.2: Buckling load against aspect ratio (SSSS) Previous
Table 2.2: B-values from present study compared with previous worksfor SSSS rectangular plate buckling.

Aspect | B..-Values B.rc-Valuesfrom | B..-Values from | Percentage Difference
Ratios from Present Previous 2i Previous 2ii Between (1) and (2)
Study (1)
1 39.508 39.508 39.488 0
11 32.948 32.949 32.932 -0.00091
1.2 28.3589 28.359 28.344 -0.00176
13 25.025 25.0256 25.011 -0.0024
14 22.528 22.529 22.520 -0.00311
15 20.610 20.6102 20.597 -0.0034
1.6 19.103 19.1036 19.090 -0.00419
1.7 17.8978 17.8983 17.890 -0.00447
1.8 16.9178 16.9186 16.910 -0.00473
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1.9

16.110

16.111

16.099

-0.0050

15.436

15.437

15.425

-0.00518

Result for clamped-clamped-clamped-clamped plate

Similarly, the non-dimensional buckling load values for CCCC plates are presented on Table 3.1 and 3.2

and Figure 2
Table 3.1: Non dimensional buckling load parameters for CCCC plate for aspect ratio of b/a
b/a 2 19 1.8 1.7 1.6
B 50.979 | 52.229 53.773 55.706 58.167
B (D) Previous 50.979 52.229 53.773 55.706 58.167
crt\_ 2
a
Present 50.9792 52.229 53.773 55.7064 58.167
Table 3.2
b/a 15 14 1.3 1.2 11 1
B 61.362 65.597 71.356 79.415 91.082 108.666
B D} Previous | 61.362 65.597 71.356 79.415 91.082 108.667
Cl”t(az
Present | 61.362 65.597 71.356 79.4158 | 91.082 108.666

(&) -
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Figure iii: buckling load, B against aspect ratio, p = b/a for CCCC (Present)
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Figure iv : buckling load, B, against aspect ratio, p = b/afor CCCC (Previous)
Table 3b: B-values from present study compared with previous works for different aspectratio for CCCC

rectangular plate buckling.

Aspect | B-Values from B-Values from | B-Values from | Percentage Difference
Ratios Present Study (3) | Previous 4i Previous 4ii Between (3) and (4)
1 108.6667 108.667 108.654 -0.00028

11 91.0823 91.082 91.068 0.000329
1.2 79.41538 79.415 79.402 0.000478
1.3 71.3566 71.3565 71.3425 0.00014
14 65.598 65.5979 65.5829 0.000152

15 61.3621 61.3621 61.3501 0
1.6 58.1679 58.167 58.151 0.001547
1.7 55.7064 55.706 55.694 0.000718
1.8 53.7734 53.773 53.761 0.000744
19 52.2299 52.229 52.212 0.001723
2 50.9792 50.979 50.965 0.000392
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