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Abstract––Relativistic effects on the linear and nonlinear properties of electron plasma waves are investigated using the 

one-dimensional quantum hydrodynamic (QHD) model for a two-component electron-ion dense quantum plasma with an 

arbitrary temperature and streaming motion. It is shown that the relativistic effects significantly affect the linear and 

nonlinear properties of electron plasma waves. Depending on the value of electron degeneracy parameter and the 

streaming velocity both compressive and rarefactive solitons can be excited in the model plasma under consideration. The 

importance of the result is also pointed out. 
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I. INTRODUCTION 
Many authors have studied the linear and nonlinear properties of plasma waves. However, most of these 

investigations are confined to classical non-relativistic plasma. Particle velocities in some plasmas may become 

comparatively high; in some cases it may even approach the speed of light. For such plasmas it becomes important to 

consider the relativistic effects. In fact relativistic effect may significantly modify the linear and nonlinear behaviour of 

plasma waves. Relativistic plasma can be formed in many practical situations e.g. in space-plasma phenomena [1], the 

plasma sheet boundary of earth‟s magnetosphere [2], Van Allen radiation belts[3] and laser-plasma interaction 

experiments[4 ]. The relativistic motion in plasmas is assumed to exist during the early period of evolution of the universe 

[5]. Regarding the relativistic effects on ion-acoustic solitary waves a number of works have been reported. Das and Paul [6] 

first investigated the ion-acoustic solitary waves in relativistic plasma and showed that relativistic effect is important on the 

formation of ion-acoustic solitary waves in presence of streaming motion of plasma particles. Subsequently, many authors 

considered various parameters together with the relativistic effect for the study of ion-acoustic solitary waves and obtained 

some fascinating results which are important in laboratory and space plasma. Recently, Saeed et al [7] have shown that in 

electron-positron-ion plasma increase in the relativistic streaming factor causes the soliton amplitude to thrive and its width 

shrinks. El-Labany et al [8] have shown that relativistic effect can modify the condition of modulational instability of ion-

acoustic waves in warm plasma with nonthermal electrons. Han et al [9] have studied the existence of ion-acoustic solitary 

waves and their interaction in weakly relativistic two-dimensional thermal plasma. Electron acoustic solitons in relativistic 

plasma with nonthermal electrons has been studied by Sahu and Roy Chowdhury [10]. Gill et al [11] have studied the 

amplitude and width variations of ion-acoustic solitons in relativistic electron-positron-ion plasma. Regarding the relativistic 

effects on electron plasma waves only a very few works can be found in the literature. Recently Bharuthram and Yu [12] 

have shown that relativistic electron plasma waves can propagate as quasi-stationary nonlinear waves as well as solitary 

waves. All of the above works on the relativistic effects on plasma waves have been reported for classical plasma. But in 

plasmas, where the particle density is high and the temperature is low quantum phenomena becomes important. Such 

quantum plasma is ubiquitous in white dwarfs, neutron stars, galactic plasma, metal nanostructures, intense laser-solid 

interaction and in many other environments. In recent years propagation of various electrostatic modes such as ion-acoustic 

waves, electron-acoustic waves, dust-acoustic waves, dust ion-acoustic waves etc. in quantum plasma have been studied by 

many authors. Quantum effects in plasmas are usually studied with the help of two well-known formulations, viz. the 

Wigner-Poisson and the Schrodinger-Poisson formulations. The Wigner-Poisson model is often used in the study of quantum 

kinetic behaviour of plasma. The Schrödinger-Poisson model describes the hydrodynamic behaviour of plasma particles in 

quantum scales. The quantum hydrodynamic (QHD) model is derived by taking velocity space moments of the Wigner 

equations. The QHD model generalizes the classical fluid model for plasma with the inclusion of a quantum correction term 

also known as the Bohm potential [13]. The model incorporates quantum statistical effects through the equation of state. 

Because of simplicity, straight forward approach and numerical efficiency the QHD model has been widely used by several 

authors [13-18]. Different approaches for modelling quantum plasmas in electrostatic limit have been reviewed by Manfredi 

[14].The QHD model as used by most authors  is valid for quantum plasmas in the ultra-cold limit. But in most practical 

cases the plasma temperature is finite and not approaching zero. Recently Eliasson and Shukla [19] have developed 

nonlinear fluid equations taking into account the moments of the Wigner equation and by using the Fermi Dirac equilibrium 

distribution for electrons with an arbitrary temperature. The model thus developed is expected to describe a finite 

temperature quantum plasma. The linear and nonlinear properties of electron plasma waves in a quantum plasma have been 

studied by a few authors in the ultra-cold limit by using QHD model [14-18]. To the best of our knowledge no one has 

studied this problem including finite temperature effects. The motivation of the present paper is to study the relativistic 
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effects arising out of streaming motion on the linear and nonlinear properties of electron plasma waves in a finite 

temperature quantum plasma by using a finite temperature quantum hydrodynamic model [19]. 

 

II. FINITE TEMPERATURE QHD MODEL EQUATIONS 
The model as developed by Eliasson and Shukla [19] is based on 3D Fermi-Dirac equilibrium distribution for 

electrons with an arbitrary temperature. Propagation of plane longitudinal electron plasma waves in a collisionless quantum 

plasma leads to adiabatic compression along one dimension only and hence to a temperature anisotropy of the electron 

distribution. In quantum picture the classical incompressibility of phase fluid is violated by quantum tunneling. However to a 

first approximation one may assume the incompressibility of the electron phase fluid. It may also be assumed that the 

chemical potential (µ) remains constant during the nonequilibrium dynamics of plasma. Based on these assumptions one 

may consider the following nonequilibrium particle distribution function: 

 
 

    

3

2 2 2

2 / 2
, ,

exp / 2 1x ex y z

m
f x v t

m v v v v



  


     
 

 
     (1) 

where m is the electronic mass,  ћ is the Plank constant divided by 2π, β =1/kBTe0 , kB is the Boltzman constant and Te0 is the 

background temperature, µ is the chemical potential.  vex is the mean velocity of the particles given by 
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and ηex (x,t) = Te0/Tex(x,t)=[n0/ne(x,t)]2 is the temperature anisotropy of the distribution function which is defined  from the 

number density variations where 
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Liγ(y) is the polylogarithm function. In the ultracold limit i.e T→0, we have β→∞ and µ→EF.  

where 
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Now using the zeroth and first moments of the Wigner equation with the Fermi-Dirac distribution function and assuming 

that the Bohm potential is independent of the thermal fluctuations in a finite temperature plasma one can derive the 

continuity and momentum equation in the following form: 
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where ne and vex are respectively the particle density and fluid velocity of electron;    is the electrostatic wave potential and  

/Te B Te ev k T m is the themal speed and γ=(1-vex
2/c2)1/2 is the relativistic factor for electrons where „c‟ is the velocity 

of light in free space. G is the ratio of two polylogarithm functions given by:  
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The system is closed under the Poisson equation, 
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We now introduce the following normalization: 
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04 /pe en e m  the electron plasma oscillation frequency and  2 /Fe B Fe ev k T m is the Fermi speed 

of electrons. Using the above normalization Eqs. (4)- (6) can be written as: 
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where / 2 pe B FeH k T   is a nondimensional quantum parameter proportional to the quantum diffraction and 

 Te FeV V  . The parameter H is proportional to the ratio between the plasma energy  pe  (energy of an elementary 

excitation associated with an electron plasma wave) and the Fermi energy B Fek T . 

 

III. DISPERSION CHARACTERISTICS 
In order to investigate the nonlinear behaviour of electron plasma waves we make the following perturbation 

expansion for the field quantities ne, vex, nec  and   about their equilibrium values: 
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Substituting the expansion (12) in Eqs. (9)-(11) and then linearizing and assuming that all the field quantities vary as 
( )i kx te 

, we get for normalized wave frequency ω and wave number k, the following linear dispersion relation : 
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In the dimensional form the dispersion relation can be written as:
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The degeneracy parameter G as defined by the Eq. (7) determines the transition between the ultra cold and thermal cases. In 

the low twmperature limit βµ→∞, µ ≈ EF ≡ (mVFe
2)/2 and G ≈ 2βEF/5, then the dispersion relation (14) takes the form  
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which  is similar to the dispersion relation for electron plasma waves in a quantum plasma obtained by using one 

dimensional QHD Model [15]  In the high temperature limit βµ→-∞ so that G→1 and then the dispersion relation (14) 

reduces to the Bohm-Gross dispersion relation for electron plasma waves in a hot plasma 
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In the high temperature limit the last term on the RHS may be neglected and then one gets the well known Bohm-Gross 

dispersion relation of electron plasma waves in a hot plasma. For a  relativistic classical cold streaming plasma the 

dispersion relation (15) reduces to  
2 2

0 pe 0ku 1 3u c   
,
which indicates two modes of propagation under 

the condition .2 2

0 pe 0ku 1 3u c 
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Figure 1. Dispersion curve for different values of streaming velocity u0 for fixed values of degeneracy parameter G and 

quantum diffraction parameter H. 

 

The dispersion relation (13) is plotted in Fig.1 both in the nonrelativistic and relativistic limits with the quantum 

diffraction parameter H= 1.5 and for different values of the streaming velocity. Obviously the wave frequency is enhanced 

by the relativistic effects.  

 
Figure 2. Dispersion curve for different values of degeneracy parameter G for fixed values of streaming velocity u0 and 

quantum diffraction parameter H. 

 

Fig.2 shows that the wave frequency is also increased with increase in the electron degeneracy parameter G for fixed values 

of quantum diffraction parameter H and streaming velocity u0. 

The group velocity gc d dk  is obtained from the dispersion relation (13) as  
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IV. DERIVATION OF THE KDV EQUATION 
In order to study the nonlinear behavior of electron plasma waves we use the standard reductive perturbation 

technique and the usual stretching of the space and time variables:  

( )1 2 x Vt  
  

and  
3 2t           (18) 

where V is the normalized linear velocity of the and ε is the smallness parameter measuring the dispersion and nonlinear 

effects.   

 

Now writing the Eqs. (9)-(11) in terms of these stretched co-ordinates ξ and τ and then applying the perturbation expansion 

(12) and solving for the lowest order equation with the boundary condition 
(1)

en , 
(1)

eu ,  and 
(1)  → 0 as │ξ│→ ∞ , the 

following solutions are obtained: 
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and then going for the next higher order terms in ε and following the usual method we obtain the desired Korteweg de Vries 

(KdV) equation: 
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To find the solution of Eq. (20) we transform the the independent variables ξ and τ into one variable η = ξ - M τ where M is 

the normalized constant speed of the wave frame. Applying the boundary conditions that as η → ± ∞;  , , 2D D    →0  

the possible stationary solution of equation (20) is obtained as: 
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where the amplitude m   and width ∆ of the soliton are given by: 
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For the existence of soliton solution we require B > 0. It requires that 3Gα2 < γ3(V-u0)
2 - (γ2H/2)  or 3Gα2 > γ3(V-u0)

2 + 

(γ2H/2). The nature of the solitary waves i.e. whether the system will support compressive or rarefactive solitary waves 

depends on the sign of A. If A is positive (or negative) a compressive (or rarefactive) solitary wave is excited. Thus for 3Gα2 

< γ3(V-u0)
2 - (γ2H/2) rarefactive soliton and for 3Gα2 > γ3(V-u0)

2 + (γ2H/2) compressive soliton is formed. From Eq (22) it is 

clear that the dispersive coefficient  B vanishes for two critical values of the diffraction parameter H, given by 

  

Hc1= 2 (3Gα2 - γ3(V-u0)
2)/ γ2   for  3Gα2 > γ3(V-u0)

2)      (26a) 

 

Hc2= 2 (γ3(V-u0)
2 -3Gα2)/ γ2  for  3Gα2 < γ3(V-u0)

2)      (26b) 

 

At these values of H no soliton solution is possible. For H< Hc1 compressive solitons and for H < Hc2 rarefactive solitons are 

obtained.  

 

V. RESULTS AND DISCUSSION 
Using the nonlinear quantum fluid equations for electrons with an arbitrary temperature and the standard reductive 

perturbation technique both the linear and nonlinear properties of electron-plasma waves have been investigated. The 

electron degeneracy parameter G and the relativistic effects are shown to influence the linear and nonlinear properties of the 

electron plasma waves in a significant way. The wave frequency increases with increase in both the degeneracy parameter G 

and streaming velocity u0. However, the wave frequency is found to be more sensitive to the variation of streaming motion 

than the electron degeneracy for a fixed value of wavenumber.  The model plasma under consideration can support both 

compressive and rarefactive types of soliton. Soliton amplitude and width are found to depend significantly on the 

degeneracy parameter G and streaming velocity u0  (Figs. 3 and 4).  
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Figure 3. Solitary structures for different values of degeneracy parameter G for fixed values of streaming velocity u0 and 

quantum diffraction parameter H. 

 

Fig. 3 shows that both the amplitude and width of the compressive solitons increase with increase in G whereas for 

rarefactive solitons the amplitude and width decreases with increase in the value of G for a fixed value of the streaming 

velocity.  

 
Figure 4. Solitary structures for different values of streaming velocity u0 for fixed values of degeneracy parameter G and 

quantum diffraction parameter H. 

 

Fig. 4 shows that similar to the effect of electron degeneracy an increase in streaming velocity u0 increases both 

the amplitude and width of the compressive solitons whereas for rarefactive solitons the amplitude and width decreases with 

increase in the value of u0 for fixed value of degeneracy parameter G. As the degeneracy parameter G determines the 

transition from ultracold to thermal cases it is important to have an idea about its value for certain practical plasmas. Table-1 

shows the values of G for certain practical plasmas. 

 

Table: I: DEGENERACY PARAMETER OF SOME PRACTICALPLASMAS 

Type of Plasma Density(m-3) Temperature(K) G 

Tokamak 1020 1018 1 

Inertial Confinement Fusion 1032 108 1 

Metal and Metal clusters 1028 104 1.4 

Jupiter 1032 104 1.4 

White Dwarf 1035 108 4 

 

Finally we would like to point out that the investigation presented here may be helpful in the understanding of the 

basic features of long wavelength electron plasma waves in dense and hot plasmas such as can be found in white dwarfs, 

neutron stars and intense laser-solid plasma experiments.  
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