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Abstract—The present study is concerned with water wave scattering by a porous bottom of varying depth in presence of a 

discontinuity at the upper surface of the ocean. Assuming linear theory and using a perturbation technique in 

conjunction with the Green's integral theorem, the first order corrections to reflection and transmission coefficients are 

obtained. By considering two different shape functions describing the bottom undulation, the effect of porosity is 

investigated numerically and these results are depicted in a number of figures against the wave number of the incident 

wave. 

 

Keywords— Wave scattering, Surface discontinuity, Porous bottom, Uneven bottom, Shape function, Reflection 

coefficient, Transmission coefficient. 

I. INTRODUCTION 
The problem of water wave scattering due to uneven bottom is an interesting topic of research over a few decades. 

A class of water wave scattering problems in presence of a small obstacle situated at the bottom was considered earlier by 

many researchers such as Lamb [1], Kreisel [2], Davies [3-4]. Mei [5] considered the problem of reflection of water waves 

by periodic sand bars and explained a theory on strong reflection i.e Bragg reflection induced by the sandbars themselves. 

Mandal and Basu [6] extended this problem to include the effect of surface tension at the free surface for an obliquely 

incident surface wave train and by employing a perturbational analysis directly to the governing problem to obtain reflection 

and transmission coefficients up to first-order in terms of integrals involving the shape function describing the bottom 

topography. Evans and Linton [7] considered the problem of water wave scattering by uneven bottom using step 

approximation and introduced scattering matrix. Ultimately they reduce this problem to a problem of scattering by a 

discontinuity at the upper surface in a uniform finite depth water and employed residue calculus technique of complex 

variable theory to obtain the reflection and transmission coefficients of the incident wave. Martha and Bora [8] also 

investigated a scattering problem in presence of a small bottom undulation and by using perturbation technique they obtained 

the reflection and transmission coefficients upto the first order. Recently Mandal and De [9] investigated a wave scattering 

problem by a free surface discontinuity together with a small bottom undulation. Using Green's integral theorem they 

obtained reflection and transmission coefficients up to first order in terms of computable integral. 

Problem of water wave interaction with a rapidly varying porous bottom is another important aspect in this 

context. The flow of fluid into the porous media leads to different phenomenon like wave energy dissipation, damping etc. 

Water wave interaction with the porous media was studied earlier by many scientists like Chwang [10], Chakrabarti [11], 

Jeng [12] and many others. Zhu [13] studied the wave propagation problem within porous media on an undulating bed by 

employing a Galerkin eigenfunction expansion technique and investigated the wave reflection coefficient numerically. Gu 

and Wang [14] also investigated the problem of water wave interaction with rigid porous seabed both theoretically and 

experimentally. Mase and Takeba [15] focused on the Bragg scattering of gravity wave over a porous sea bed. Also the work 

of Silva [16] discussed on water-wave reflection and transmission problem where a porous medium was assumed to lie on a 

rapidly varying sea-bed. Recently, Martha and Bora [17] considered the problem of oblique water wave scatting by a small 

patch of sinusoidal bottom undulation over a rigid porous bottom and obtained the reflection and transmission coefficients 

by employing fourier transformation technique. 

In the present article, we consider a water wave scattering problem by a rigid porous bottom of variable depth in 

presence discontinuity at the upper surface of the ocean. The problem is mathematically formulated in case of normally 

incident wave. The discontinuity at the upper surface may be presented in different form such as two different vast floating 

inertial surfaces of non-interacting materials or large broken ice sheets in the Antarctic regions etc. Here the upper surface of 

the ocean is assumed to be covered by two vast floating inertial surfaces of different thickness which produces a 

discontinuity at the upper surface of water. The effect of porous bottom is taken into account by assuming that the ocean 

bottom is composed of some specific type of rigid porous material with small undulation which characterized by a known 

shape function. The bottom boundary condition in this case usually involves a known porosity parameter G representing the 

typical of porous bottom. The wave train is incident from negative infinity direction which is partially reflected and partially 

transmitted along the surface of the ocean. The presence of small undulation at the bottom suggests that a perturbation 

technique can directly be applied to the governing boundary value problem and the associated boundary conditions. By 

applying perturbation analysis in terms of a small parameter 𝜀 characterizing the bottom undulation upto order one, two 

different boundary value problems(BVP) are generated. They are renamed as BVP-1 and BVP-2 respectively. The BVP for 

the zero order potential function represents a scattering problem in presence of a discontinuity at the upper surface over a 
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uniform porous bottom. This problem is solved here by using residue calculus technique followed by Evans and Linton [7] 

and the zero order corrections to the reflection and transmission coefficients are obtained for the purpose. Now without 

solving the BVP-2 for the first order potential function, the first order corrections to the reflection and transmission 

coefficient are obtained by using Green's integral theorem. The analytical expressions for these coefficients are presented in 

terms of computable integrals involving the bottom shape function, zero order potential function and an additional term 

containing G. We choose two different bottom profile functions, one is exponential and other sinusoidal to describe the 

undulations at the ocean bottom. These type of bottom profiles can be observed in different regions of an ocean due to 

growth of sand ripples, sedimentation of different porous materials at the bottom and other naturally occurring phenomenon. 

For these type of bottom profiles, the first order corrections for reflection and transmission coefficients are depicted 

graphically against the wave number of the incident wave in a number of figures. The effect of porosity on the first order 

reflection and transmission coefficients is investigated in presence of surface discontinuity by taking different values of the 

dimensionless porosity parameter in different cases. 

 

II. MATHEMATICAL FORMULATION OF THE PROBLEM 
A right handed regular cartesian co-ordinate system (𝑥, 𝑦) is chosen in which 𝑦 = 0 represents the undisturbed 

upper surface of water and the y-axis is taken vertically downward into the fluid region. The upper surface is covered by two 

floating inertial surfaces of uniform area densities 𝜀1𝜌 and 𝜀2𝜌 (𝜌 being the density of water). One of the inertial surface 

occupies the region 𝑦 = 0,𝑥 < 0 and the other occupies the region 𝑦 = 0,𝑥 > 0. The wave field is incident from 𝑥 → −∞ 

and the direction of the positive x-axis being opposite to the direction of the incoming incident wave field. Assuming linear 

theory and irrotational motion, the velocity potential describing the time-harmonic motion of angular frequency 𝜍, can be 

represented by 𝑅𝑒[𝜙(𝑥, 𝑦)𝑒−𝑖𝜍𝑡 ], where 𝜙 satisfies the following two dimensional Laplace equation: 

 

                                                                            
∂2𝜙

∂𝑥2 +
∂2𝜙

∂𝑦2 = 0,               on 0 < 𝑦 < ℎ + 𝜀𝑐 𝑥 ,−∞ < 𝑥 < ∞.                              (1) 

 

The upper surface boundary conditions are prescribed by 

 

                                                                           𝐾1𝜙 +
∂𝜙

∂𝑦
= 0              𝑜𝑛 𝑦 = 0,𝑥 < 0,                                                                  (2) 

                                                                            𝐾2𝜙 +
∂𝜙

∂𝑦
= 0              𝑜𝑛 𝑦 = 0,𝑥 > 0.                                                                 (3) 

 

                            This produces a discontinuity in the upper surface boundary conditions at the point (0,0), where 𝐾1 =
𝐾

1−𝜀1𝐾
,𝐾2 =

𝐾

1−𝜀2𝐾
, 𝜀1,𝜀2 <

𝑔

𝜍2 and 𝐾 =
𝜍2

𝑔
 (𝑔 is the acceleration due to gravity). 

 

The bottom boundary condition in case of uneven porous bottom (Martha, Bora, Chakrabarti [17])is given by 

 

                                                                   
∂𝜙

∂𝜂
− 𝐺𝜙 = 0 𝑜𝑛𝑦 = ℎ + 𝜀𝑐(𝑥).                                                                             (4) 

Here 𝑦 = ℎ + 𝜀𝑐(𝑥) describes the bottom of the ocean with variable depth. The positive number 𝜀 signifies smallness of the 

undulation at the bottom and 𝜂 is the outward normal to the ocean bed. The bottom undulation is characterized by a known 

shape function 𝑐(𝑥) with the property that 𝑐(𝑥) → 0 as 𝑥 → ±∞ ensuring that far away from the undulation the ocean is of 

uniform finite depth of ℎ below the mean free surface. 

The far field behavior of 𝜙(𝑥, 𝑦) is described by 

 

                                                𝜙 𝑥, 𝑦 →  
𝑇𝑒𝑖𝑠0𝑥𝜓0

2(𝑦) 𝑎𝑠𝑥 → ∞,

(𝑒𝑖𝑘0𝑥 + 𝑅𝑒−𝑖𝑘0𝑥)𝜓0
1(𝑦) 𝑎𝑠𝑥 → −∞,

                                                   (5) 

where         

                                                                𝜓0
1(𝑦) = 𝑁0

1(cosh𝑘0(ℎ − 𝑦) −
𝐺

𝑘0
sinh𝑘0(ℎ − 𝑦)), 

                                                                𝜓0
2(𝑦) = 𝑁0

2(cosh𝑠0(ℎ − 𝑦) −
𝐺

𝑠0
sinh𝑠0(ℎ − 𝑦)) 

and                                                 𝑁0
1 =

2𝑘0

3
2

 2𝑘0(𝐺−𝐺2ℎ+𝑘0
2ℎ)−2𝐺𝑘0cosh 2𝑘0ℎ+(𝑘0

2+𝐺2)sinh 2𝑘0ℎ

, 

                                                               𝑁0
2 =

2𝑠0

3
2

 2𝑠0(𝐺−𝐺2ℎ+𝑠0
2ℎ)−2𝐺𝑠0cosh 2𝑠0ℎ+(𝑠0

2+𝐺2)sinh 2𝑠0ℎ

. 

Here, 𝑒𝑖𝑘0𝑥𝜓0
1(𝑦) represents the incident wavefield, 𝑅 and 𝑇 are respectively the unknown reflection and transmission 

coefficients(complex) to be determined. 𝑘0 and 𝑠0 are the unique breal positive roots (Cf. McIver [18]) of the following two 

transcendental equations in terms of 𝜆: 

                                                                        (𝜆 +
𝐾1𝐺

𝜆
)tanh𝜆ℎ = 𝐾1 + 𝐺, 

                                                                          (𝜆 +
𝐾2𝐺

𝜆
)tanh𝜆ℎ = 𝐾2 + 𝐺. 
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III. METHOD OF SOLUTION 
                           As 𝜀 is small, the approximate form of the bottom boundary condition (4) after neglecting 𝑂(𝜀2) terms is 

given by 

 

                                        
∂𝜙

∂𝑦
− 𝐺𝜙 − 𝜀  

𝑑

𝑑𝑥
 𝑐 𝑥 

∂𝜙 𝑥 ,ℎ 

∂𝑥
 + 𝐺𝑐 𝑥 

∂𝜙

∂𝑦
 + 𝑂 𝜀2 = 0       𝑜𝑛 𝑦 = ℎ.                           (6) 

 

The form of the approximate boundary condition (6) and smallness of the parameter 𝜀 suggests that 𝜙, 𝑅 and 𝑇 has the 

following perturbational expansion in terms of 𝜀: 

 

                                                   𝜙(𝑥, 𝑦; 𝜀) = 𝜙0(𝑥, 𝑦) + 𝜀𝜙1(𝑥, 𝑦) + 𝑂(𝜀2),                                                          (7) 

 

                                                                  𝑅(𝜀) = 𝑅0 + 𝜀𝑅1 + 𝑂(𝜀2),                                                                      (8) 

 

                                                                   𝑇(𝜀) = 𝑇0 + 𝜀𝑇1 + 𝑂(𝜀2).                                                                        (9) 

 

Substituting (7)-(9) in (1)-(5), we find that 𝜙0 and 𝜙1 satisfies two different boundary value problems. 

 

BVP-1             
 

The function 𝜙0(𝑥, 𝑦) satisfies the following boundary value problem: 

 

 
∂2𝜙0

∂𝑥2 +
∂2𝜙0

∂𝑦2 = 0 𝑖𝑛 0 < 𝑦 < ℎ,−∞ < 𝑥 < ∞, 

 

 𝐾1𝜙0 +
∂𝜙0

∂𝑦
= 0 𝑜𝑛𝑦 = 0, 𝑥 < 0, 

 

 𝐾2𝜙0 +
∂𝜙0

∂𝑦
= 0 𝑜𝑛𝑦 = 0,𝑥 > 0, 

 

 
∂𝜙0

∂𝑦
− 𝐺𝜙0 = 0 𝑜𝑛𝑦 = ℎ, 

 

 𝜙0 𝑥, 𝑦 →  
𝑇0𝑒

𝑖𝑠0𝑥𝜓0
2(𝑦) 𝑎𝑠 𝑥 → ∞,

𝑒𝑖𝑘0𝑥𝜓0
1(𝑦) + 𝑅0𝑒

−𝑖𝑘0𝑥𝜓0
1(𝑦) 𝑎𝑠  𝑥 → −∞.

  

 

Here 𝑅0 and 𝑇0 stands for the reflection and transmission coefficient of zero order respectively. The above BVP of 𝜙0(𝑥, 𝑦) 

describes a scattering problem by a discontinuity at the free surface boundary condition over a uniform porous bottom. 

Following Evans and Linton [7], using residue calculus method of complex variable theory the zero order reflection and 

transmission coefficients are respectively given by 

 

                                                                                            𝑅0 =
𝑘0−𝑠0

𝑘0+𝑠0
𝑒2𝑖𝛼 ,                                                                                      (10) 

                                                                                 𝑇0 =
2𝑘0

𝑘0+𝑠0
𝑒𝑖(𝛼+𝛽),                                                                                  (11) 

Where,  

                                                                         𝛼 =  ∞
𝑛=1 [tan−1(

𝑘0

𝑠𝑛
) − tan−1(

𝑘0

𝑘𝑛
)], 

                                                          𝛽 =  ∞
𝑛=1 [tan−1(

𝑠0

𝑘𝑛
) − tan−1(

𝑠0

𝑠𝑛
)]. 

Here, 𝑘𝑛  and 𝑠𝑛(𝑛 = 1,2,3, . . . . . ) are given by positive real roots of the following two transcendental equations in terms of 

𝜆: 

                                                               (𝜆 −
𝐾1𝐺

𝜆
)tan𝜆ℎ + 𝐾1 + 𝐺 = 0, 

                                                                  (𝜆 −
𝐾2𝐺

𝜆
)tan𝜆ℎ + 𝐾2 + 𝐺 = 0. 

BVP-2 
 

The first order potential function 𝜙1(𝑥, 𝑦) satisfies the following BVP: 

 

 
∂2𝜙1

∂𝑥2 +
∂2𝜙1

∂𝑦2 = 0  𝑖𝑛  0 < 𝑦 < ℎ,−∞ < 𝑥 < ∞, 

 

 𝐾1𝜙1 +
∂𝜙1

∂𝑦
= 0 𝑜𝑛𝑦 = 0,𝑥 < 0, 

 

 𝐾2𝜙1 +
∂𝜙1

∂𝑦
= 0 𝑜𝑛𝑦 = 0, 𝑥 > 0, 
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∂𝜙1

∂𝑦
− 𝐺𝜙1 =

𝑑

𝑑𝑥
{𝑐(𝑥)

∂𝜙0

∂𝑥
} + 𝐺𝑐(𝑥)

∂𝜙0

∂𝑦
𝑜𝑛𝑦 = ℎ, 

 

 𝜙1 𝑥, 𝑦 →  
𝑇1𝑒

𝑖𝑠0𝑥𝜓0
2(𝑦) 𝑎𝑠𝑥 → ∞,

𝑅1𝑒
−𝑖𝑘0𝑥𝜓0

1(𝑦) 𝑎𝑠𝑥 → −∞.
  

 

The above BVP for 𝜙1 represents a radiation problem in presence of an upper surface discontinuity over an uneven porous 

bottom.𝑅1 and 𝑇1 are the first order reflection and transmission coefficient respectively. It may be noted that bottom 

boundary condition for 𝜙1 involves the porosity parameter G and the known bottom shape function 𝑐(𝑥). This ensures that 

the bottom undulation over porous bottom has an effect on the reflection and transmission coefficients at first order. 

 

The eigenfunction expansion of the zero order potential function 𝜙0(𝑥,𝑦) is given by 

 

                                   𝜙0 𝑥, 𝑦 →  
𝑇0𝑒

𝑖𝑠0𝑥𝜓0
1(𝑦) +  ∞

𝑛=1 𝐵𝑛𝑒
−𝑠𝑛𝑥𝜓𝑛

2(𝑦) 𝑎𝑠 𝑥 > 0,

(𝑒𝑖𝑘0𝑥 + 𝑅0𝑒
−𝑖𝑘0𝑥)𝜓0

1(𝑦) +  ∞
𝑛=1 𝐴𝑛𝑒

𝑘𝑛𝑥𝜓𝑛
1(𝑦) 𝑎𝑠 𝑥 < 0,

                             (12) 

 

where 𝐴𝑛  and 𝐵𝑛(𝑛 = 1,2, . . . . . ) are the unknown constants. 𝜓𝑛
1(𝑦), 𝜓𝑛

2(𝑦)(𝑛 = 1,2, . . . . . ) are the orthogonal depth 

eigenfunctions given by 

 

                                                    𝜓𝑛
1(𝑦) = 𝑁𝑛

1(cos𝑘𝑛(ℎ − 𝑦) −
𝐺

𝑘𝑛
sin𝑘𝑛(ℎ − 𝑦)), 

                                         𝜓𝑛
2(𝑦) = 𝑁𝑛

2(cos𝑠𝑛(ℎ − 𝑦) −
𝐺

𝑠𝑛
sin𝑠𝑛(ℎ − 𝑦))(𝑛 = 1,2, . . . . . ) 

 

where, 

                                             𝑁𝑛
1 =

2𝑘𝑛

3
2

 2𝑘𝑛 (−𝐺+𝐺2ℎ+𝑘𝑛
2ℎ)−2𝐺𝑘𝑛 cos 2𝑘𝑛ℎ+(𝑘𝑛

2−𝐺2)sin 2𝑘𝑛ℎ
, 

                                    𝑁𝑛
2 =

2𝑠𝑛

3
2

 2𝑠𝑛 (−𝐺+𝐺2ℎ+𝑠𝑛
2ℎ)−2𝐺𝑠𝑛 cos 2𝑠𝑛ℎ+(𝑠𝑛

2−𝐺2)sin 2𝑠𝑛ℎ
(𝑛 = 1,2,3, . . . . . . ). 

Now using the matching condition of 𝜙0(𝑥, 𝑦) at 𝑥 = 0 and orthogonality of the depth eigenfunctions produces the 

following system of linear equations 

 

                                                                     ∞
𝑛=1

𝐵𝑛𝑁𝑛
2cos 𝑠𝑛ℎ

𝑠𝑛−𝑘𝑚
=

𝑇0𝑁𝑛
2cosh 𝑠0ℎ

𝑖𝑠0+𝑘𝑚
, 

                                                                                                                                                                                  (13) 

                                          ∞
𝑛=1  

𝐴𝑛𝑁𝑛
1cos 𝑘𝑛ℎ

𝑘𝑛−𝑠𝑚
 = 𝑁0

1cosh𝑘0ℎ  
𝑅0

𝑖𝑘0+𝑠𝑚
−

1

𝑖𝑘0−𝑠𝑚
 , (𝑚 = 1,2, . . . . ). 

 

The unknown constants 𝐴𝑛 , 𝐵𝑛(𝑛 = 1,2,3, . . . . . . . ) are to be eliminated numerically from (13) after truncating the infinite 

sums upto the desired accuracy.  

 

IV. REFLECTION AND TRANSMISSION COEFFICIENT OF FIRST ORDER 
The first order corrections for the reflection and transmission coefficients can be obtained by using Green's integral 

theorem for the two potential function 𝜙0(𝑥, 𝑦) and 𝜙1(𝑥,𝑦) as 

 

                                                                 
𝐿

(𝜙0𝜙1𝜈 − 𝜙1𝜙0𝜈)𝑑𝑙 = 0,                                                                    (14) 

 

where 𝜈 is the outward normal to the line element dl and the contour L is specified by the lines 

 

 𝑦 = 0  𝑎𝑛𝑑 − 𝑋 ≤ 𝑥 ≤ 𝑋, 
 

 𝑥 = ±𝑋  𝑎𝑛𝑑 0 ≤ 𝑦 ≤ ℎ, 
 

 𝑦 = ℎ  𝑎𝑛𝑑 − 𝑋 ≤ 𝑥 ≤ 𝑋(𝑋 > 0). 
 

The outgoing nature of the potential function 𝜙0(𝑥, 𝑦) as 𝑥 → ∞ and the boundary conditions for 𝜙0(𝑥, 𝑦) and 𝜙1(𝑥, 𝑦) 

ensures that only contribution to (14) comes from the bottom part 𝑦 = ℎ𝑎𝑛𝑑 − 𝑋 ≤ 𝑥 ≤ 𝑋 and 𝑥 = −𝑋𝑎𝑛𝑑 0 ≤ 𝑦 ≤ ℎ. 

 

Therefore, we obtain, 

 

                                                   2𝑖𝑘0𝑅1 =  
∞

−∞
(𝑐(𝑥)(𝜙0𝑥

2 (𝑥, ℎ) − 𝐺2𝜙0
2(𝑥, ℎ))𝑑𝑥.                                              (15) 

 

The first order transmission coefficient can be obtained by considering 𝜙0(−𝑥, 𝑦) and 𝜙1(𝑥, 𝑦) in (14) and arguing in the 

same manner as above, we obtain, 
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                                               2𝑖𝑠0𝑇1 = − 
∞

−∞
(𝑐(𝑥)(𝜙0𝑥(𝑥, ℎ)𝜙0𝑥(−𝑥, ℎ) + 𝐺2𝜙0(𝑥, ℎ)𝜙0(−𝑥, ℎ))𝑑𝑥.                             (16) 

 

The integral representations of 𝑅1 and 𝑇1 given by (15) and (16) contains an additional term of porosity parameter G. 

However, in case of non-porous bottom(G=0), these forms are similar to the results obtained by Mandal and De [9] for the 

same type of problem. 

 

V. NUMERICAL RESULTS 
In this section, two different bottom shape functions are considered and numerical results for the first order 

reflection and transmission coefficients are explained briefly. 

 

Case-1:   

The first bottom profile function is taken as 

 

𝑐(𝑥) = 𝑐0𝑒
−𝜇 𝑥 − ∞ < 𝑥 < ∞. 

 

The above 𝑐(𝑥) represents exponentially decaying topography over porous bottom. The expressions of 𝑅1 and 𝑇1 

for this 𝑐(𝑥) are given in the Appendix. The first order reflection and transmission coefficients are computed numerically for 

different values of 𝐾ℎ by taking 𝑐0/ℎ = 0.1,𝜇ℎ = 1.0, 𝜀1/ℎ = 0.01, 𝜀2/ℎ = 0.02 and the values of the dimensionless 

porosity parameter is taken as 𝐺ℎ = 0.00,0.05,0.1 respectively. These numerical results for 𝑅1 and 𝑇1 are depicted against 

𝐾ℎ in figure-1 and figure-2 respectively against the wave number of the incoming wave. In the figure-1 the amplitude of 𝑅1 

is plotted against 𝐾ℎ for different values of the porosity parameter 𝐺ℎ. It is interesting to note that for each value of 𝐺ℎ, the 

graph of |𝑅1| first increases with 𝐾ℎ up to a maximum value and then gradually decreases i.e a Bragg resonance is observed 

here in all cases. 

 

 

 

 
Fig-1 

 

 

This may be attributed due to exponentially decaying bottom undulation and the nature of the incident wave field. 

These values of |𝑅1| are observed to be rapidly decreasing with 𝐾ℎ which is very prominent for 𝐾ℎ > 1.256 because far 

away from the bottom undulation the ocean is of uniform finite depth ℎ below the mean free surface. Moreover, for each 𝐺ℎ, 

occurrence of zeros of |R1|for certain values of 𝐾ℎ implies that the sinusoidal bottom does not affect the incident waves at 

first-order for certain frequencies. 
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                   Fig. 2 

 

 

                                      
                 Fig. 3 

 

 

Another interesting feature of figure-1 is that as numerical value of the porosity parameter 𝐺ℎ increases, the 

highest amplitude of 𝑅1 also increases with 𝐺ℎ. This can be explained as 𝑅1 in (15) contains 𝑐(𝑥) and an additional term 

containing 𝐺2. Moreover the ocean bed is assumed to be composed of specific type of porous material with porosity 

parameter 𝐺 along with the free surface discontinuity has an effect on the reflection and transmission coefficient at first 

order. 

 

In the figure-2 the amplitude of 𝑇1 is plotted against 𝐾ℎ for different values of 𝐺ℎ. For each 𝐺ℎ, |𝑇1| picks up a 

highest value for a certain 𝐾ℎ and gradually decreases with 𝐾ℎ which is prominent for 𝐾ℎ > 1.5898 in all cases. The 

highest amplitude of 𝑇1 is found to be increasing with the increasing value of 𝐺ℎ. Also from the figure-1 and figure-2, it is 

observed that figures of |𝑅1| and |𝑇1| agrees with the results obtained by Mandal and De [9] in case of non-porous 

bottom(𝐺ℎ = 0). 
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                Fig-4 

 

                     In figure-3, the amplitude of 𝑅1 is shown against 𝐾ℎ for different values of 𝜇ℎ when 𝑐0/ℎ = 0.1, 𝜀1/ℎ =
0.01, 𝜀2/ℎ = 0.02 and value of porosity parameter is taken as 𝐺ℎ = 0.05. It is seen that for each value of 𝜇ℎ, the nature of 

the graph of |𝑅1| is almost similar to case of figure-1. In this case, the maximum amplitude of 𝑅1 is found to be decreasing 

with the increasing value of 𝜇ℎ. This fact can be explained according to the form of 𝑅1 given in the Appendix which shows 

that 𝑅1 is inversely related to 𝜇ℎ. In figure-4 the same figure is plotted in case of non-porous bottom (𝐺ℎ = 0) and this 

matches with the figure obtained by Mandal and De [9] for the exponential bottom profile. 

 

 

                              
Fig-5 

 

Case-2: The sinusoidally varying bottom profile is taken as 

 

                                                               𝑐 𝑥 = 𝑐0sin𝜆𝑥                 
−𝑚𝜋

𝜆
≤ 𝑥 ≤

𝑚𝜋

𝜆
 

 

= 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 , 
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where ripple amplitude 𝑐0 and ripple wave number 𝜆. The expression of 𝑅1 is given in the Appendix for the above 𝑐(𝑥). By 

(17) we get 𝑇1 = 0. In figure-5, |𝑅1| is plotted against 𝐾ℎ by taking 𝐺ℎ = 0.00,0.05,0.1 when 𝜀1/ℎ = 0.01, 𝜀2/ℎ = 0.02 

and 𝜆ℎ = 1. This figure shows the changes of |𝑅1| for different value of the porosity 𝐺ℎ. The graph of |𝑅1| is found to be 

oscillatory in nature for each 𝐺ℎ and the oscillation gradually decreases with 𝐾ℎ which is prominent for 𝐾ℎ > 1.1. The 

oscillation of |𝑅1| picks a maximum value of for certain 𝐾ℎ hence a Bragg resonance is observed here in all cases. It is also 

found that as the value of 𝐺ℎ is increasing, the highest amplitude of 𝑅1 is also found to be increasing and has shifted to the 

left. This may be attributed due to a sinusoidally varying porous bottom and the presence of surface discontinuity at the 

upper free surface. In figure-5, for case of non-porous bottom(𝐺ℎ = 0), the graph of 𝑅1 is almost similar to the results 

obtained by Mandal and De [9]. 

 

                         
     Fig-6 

 

The figure-6 is plotted for |𝑅1| against 𝐾ℎ by taking two different values of the ripple amplitude 𝑐0/ℎ = 0.1,0.2 over porous 

bottom(Gh=0.05) while 𝜀1/ℎ = 0.01, 𝜀2/ℎ = 0.02 and 𝜆ℎ = 1. It is observed that overall values of |𝑅1| are increasing with 

the value of 𝑐0/ℎ. The same figure for |𝑅1| in case of non-porous bottom(𝐺ℎ = 0) is plotted in figure-7, agrees with the 

result obtained by Mandal and De [9]. 

 

                         
Fig-7 
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VI. CONCLUSION 
A simplified perturbation technique and Green's integral theorem are employed to obtain the first order reflection 

and transmission coefficient. From the numerical results and figures, it is observed that for a sinusoidal patch and 

exponentially decaying porous bottom with an upper surface discontinuity has a significant impact on the reflection and 

transmission coefficients at first order in different cases. The analytical and numerical results agrees with the results obtained 

by Mandal and De [9] in the case of non-porous bottom(𝐺 = 0). 

Problems of this type relating to porous bo ttom is found to be important in different branch of coastal science and 

engineering over a few decades. Understanding the effect of porous bottom on the wave characteristics in presence of a 

surface discontinuity over uneven bottom has gained considerable amount of interest to the scientists due to its various 

potential applications in different research areas of marine science and oceanography. 
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APPENDIX 

Case-1 (for sinusoidally varying bottom topography 𝑐 𝑥 = 𝑐0sin𝜆𝑥): 
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𝑇1 = 0. 
 

Case-2 (for exponential bottom topography𝑐(𝑥) = 𝑐0𝑒
−𝜇 |𝑥 |): 
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