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Diffusion in hollow cylinders with mathematical treatment
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Abstract—Diffusion-induced stresses in hollow cylinders for decay transient states were investigated. Two cases are
considered and studied, the first case is a diffusion process, with the initial concentration described by C=Cgln(r/a)In(b/a)
, in which the solute diffuses from outer into inner surfaces when steady state has finished and zero concentrations at
both boundary surfaces. The second case, with the initial concentration described by C= -Coyln(r/b)In(b/a) , in which the
solute diffuses from inner into outer surfaces when steady state has finished and zero concentrations at both boundary
surfaces. The stress formulas in the hollow cylinder were derived. The radial stress, tangential stress, axial stress and the
maximum shear stress for zero axial force are calculated.
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. INTRODUCTION

Diffusion-induced stresses are built up by composition during mass transfer. According to Prussin [1] and Li [2],
the stresses arising from a concentration distribution are similar to the thermal stresses induced by a temperature distribution
in an elastic medium. One of the most important effects of diffusion-induced stresses is dislocation generation. This effect
improves the mechanical properties of steel [3]. Li, Lee and coworkers [4-7] have made extensive studies on diffusion-
induced stresses in various systems including thin slab, long bars and solid cylinder, solid sphere and composites. Recently,
Lee et al. [8-9] studied the diffusion-induced stresses in a hollow cylinder for constant surface concentration, constant
average concentration and instantaneous surface concentration for one special case. However, the decay part of diffusion-
induced stresses has been mostly neglected by the previous workers. A more general mathematical solution of diffusion-
induced stresses for decay transient state in hollow cylinders with different outer/inner radius ratio has not been found to our
knowledge. In this paper, both the concentration profiles and stress distribution profiles were presented, respectively.

1. CONCENTRATION DISTRIBUTION
Consider an isotropic medium of hollow cylinder with inner radius a and outer radius b. Assume that the diffusion
coefficient D is constant. According to Fick’s law, the solute concentration C satisfies the diffusion equation in the
cylindrical coordinate,

aC 2°C 1aC
I D - 4+
ot o2 ror
o

where r is the radial variable and t is the time in the cylindrical coordinate, respectively.

2.1. Decay transient state

Similar to the solution of the temperature distribution solved by Carslaw and Jaegar [10], both diffusion processes
of constant surface concentration source from outer into inner surfaces and reverse case including steady, set up transient,
and decay transient states have been studied [11].

2.1.1. Case A
Consider the concentration of the steady state as the initial condition and the boundary conditions on the two

surfaces are
In (rj
a
In (bj
a @)

t<0,a<r<b,C=C

t>0,r=a,C=0
t>0,r=b,C=0
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The solution of this case has been derived and discussed in our previous paper [11] and are rewritten as

2
C = ﬂCO OZO: ‘;O (ban )Joz(ran) exp(_ Danzt)
n=1J§(acn)—-35(ban)

@)
The normalized concentration of this case can be expressed as
C © J§(aan (aa r*) 2
— = x y A0 exp[—(aan) r]
where
Uo(aan r*)z Jo(aan r*>(0 (kaay, )—Yo (aan r*)lo(kaan)
* r b Dt
rFr =— k =— T= _2
a a a
Where are the positive roots of function as given in Table 1 [10].
Table 1
Roots of Jylaa, IV, (ba, )-J,(be, ¥,(ac, ).
b ad, ad, adc; ad, ad;
a
12 157014 314126 47.1217 62.8302 78.3385
1.5 6.2702 12,5508 18.8451 25,1204 31.4133
2.0 3.1230 62734 04182 12.5614 157040
2.5 2.0732 41773 6.2754 83717 10.4672
30 1.5485 3.1201 47038 62767 7.8487
33 1.2339 23002 3.7608 50196 6.2776
4.0 1.0244 20809 3. 1322 41816 3.230
2.1.2.Case B
Consider the concentration of the steady state as the initial condition and the boundary conditions on the two surfaces are
b
In(j
r
tSO,a<I’<b,C=C0 b
In| —
a
=0, r=a,C=0
f=0, r=58C=0
®)
The solution of this case has been derived and discussed earlier [11] and are rewritten as
© Jgplaan Nolb r
=1 J§(aan)-35(bay) 6)

The normalized concentration of this case is
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c_ % Jo(aarz,)Jo(kaaano(kaanr )exp[— (act, )zr]
Co n=1 J§(aa,)—- 36 (kaay)

(M
Where

Uo(kaan r**): Jo(kaan r**){o (kaay, )—Yo (kaan r“)]o(kaan)

**

r = k: T=—F

b Dt
a 6.2

r
b
2.2 stress distribution

The derivation of stress distribution arising from the solute diffusion is similar to the thermal stresses arising from
the heat transfer if the thermal expansion coefficient and temperature are replaced by one-third of the partial molar volume
and concentration, respectively [12]. The radial stress , tangential stress and axial stress can be expressed as

vi 2 .2
oy = VE z(r aZJQCrdr—ngrdr]

3(1- b2 -
@-vyr a @
Vi 2 2
O = VE 5 r2+azj(.E"CrdrJrjl,[‘Crdr—Cr2
31-v)re\b“-a
)
Op = VE (22 2jg‘Crdr—C]
2.2.1. Case A
In this case, the following two integrals are used for calculation of stresses,
r
Iéon(ran)dr=—a—{Jo(ban)Y1(ran)—Yo(ban)Jl(ran)}
n
_ 2Jg(bap)
2
e Jo(aan) (11)
A{Jg(aan) —Jg(ba
1Prug(rey )dr = ol 2n) o(ban)}

Substituting Egs. (11)-(12) into Eqgs. (8)-(10), one obtains

X2 )
VEC)  k?-1n=1(aayr )?Jo(acy)[Jo(aay)+Jo(kaap)]
3(1-v)

+

% 38 (kaay)[3g (kacn ¥y (aanr ) ~Yo (kaan)Jy(@anr )] |
n=1 aanr [I8(aay) - I¢ (kaay)]
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0 2J3 kaa
§ o 2hlaen) (@)
n=l(aanr )“Jo(aan)3g(aay) -4 (kaap)] (13)
2 )
lo2Y:] _ r +]1 » 2J0(k3.0!n) B
VEC,  k?-1n-1(aa,r )?Jg(acy)[Jg(acy,)+Jg(kaan)]
3(1-v)

% 38 (kaan) o (kaan)Yi (@anr”) ~Yo(Kacn) Iy (acnr )] _

n—1 aanr [3¢ (@) - I8 (kaap)]

g 233 (kaay) Lz 3¢ (kaay U (aanr™)

n=1(aanr” ) Jg(aan)[I§ (acn) - 3§ (Kay)]  n=1J§(acn) - 3§ (kaay)

xexp[~(aap)?7] )
*2

on _ A4 3¢ (kaap) B

VEC, k% -1n=1(aanr )?Jg(aay)[Jo(@an)+Jokacy)]

31-v)

o J2(kaan)Ug(acnr
£ Jotkaan)lolacnl )y, oypr (acn)?e]
n=1Jg(aca,)—Jg (kaap) (15)

where

Uo(aan r*): Jo(aanr*)(o (kaa, )—Yo (aanr*)lo(kaan)

2.2.2.Case B
In order to compute the stress distribution, the following two integrations are required.

15U (reg )dr =— ——{3g (ban )Yy (ran) —Yo (barn) Iy (ram)}
n

 23p0bay)
2
ﬂan JO(aan) (16)

Substituting Egs. (12)- (16) into Egs. (8)- (10), one obtains

60



Diffusion in hollow cylinders with mathematical treatment

o _, (ki) -1x 2J¢ (kacy,) B
VECy k2-1 n-a(kaanr)?[Jg(acy)+Jo(kacy)]
31-v)

% Jo(@an)Jo(kaay) 3o (kacy )V (kacrr ™) ~Yo (kacr) Jy (kaczar )] _

n-1 kaar™ [I4 (aan) - I8 (kaay)]
© 2
Lokam) s expl-(aan)?e]

n=1(kaanr )°[Jg(@an)—J4 (kaay)] 7)
oo _, (kI )2 +1 2Jg (kaay) .

VEC, k2 -1 noa(kaanr )?[Ig(acy)+Jg(kaay)]

31-v)

7[§ JO(a“n)JO(ka‘Zn)[JO(kaan)Yl(kaanr**)_Yo(kaan)Jl(kaanr**)]+

n=1 kaayr™ [I4(aapn) - I8 (kaay)]

0 238 (kaap) o Jo(aan)Jdg(kaan)UgKaanr )

- 2112 Y. R 2 Y

n=1(kaanr )°[I§(acy) -6 (kaay)] n=1 J§(aay) - I¢ (kaap)
xexp[—(aan)?7] a8)
oy _ 2kr )% = 2o (kaan) .

VEC, k2 -1 n-(kaanr )2[Jo(aan)+Jg(kaan)]

31-v)

ﬂg Jo(aar,z)JO(kaan)zlJo(kaanr )}xexp[—(aan)zr]

n=1 Jo(aan)—JO(kaan) (19)

Where

Uo(kaan r**)z Jo(kaan r**){o (kaap ) Jo(kaay Mo (ka“n r**)

*x

r = k:

r
b
1. RESULTS AND DISCUSSION

3.1. Radial stresses . .
For cases A and B, some values of 6,/[VEC/3(1-V)] predicted by Egs. (13) and (17) are plotted against r and r
for k =1.2, 2 and 4, at various time as shown in Figs. 1 (a)-(c) and Figs. 2 (a)-(c), respectively.
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As shown in Figs. 1, for case A, the radial stress component o, is tensile in the region near the inner surface and compressive
near the outer surface. The stress distribution decreases with increasing time. The curves ofc,, are similar to sine curves.
Furthermore, for case B, the radial stress has the same situation as that in case A as shown in the Figs. 2.
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Fig. 1 The radial stress of with various diffusion times for case A. (a) k=1.2 (b) k=2 (c) k =4.
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Fig. 2 The radial stress of with various diffusion times for case B. (a) k =1.2 (b) k =2 (c) k = 4.

3.2. Tangential stresses .
For cases A and B, some values ofcye/[VEC0/3(1-V)] predicted by Eqgs. (14) and (18) are plotted against r and

r™ for k = 1.2, 2 and 4, at various time as shown in Figs. 3 (a)-(c) and Figs. 4 (a)-(c), respectively. As shown in Figs. 3, the
tangential stress component Ggy iS tensile in the region near both surfaces and compressive in the middle region of hollow
cylinder. The stress distribution decreases with increasing time. The curves of ogq are similar to parabolic curves. It is found
that the slope of the curve near the outer surfaces is steeper in the brief times for k = 1.2. However, the slope of the curve
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near the inner surfaces is constant. For case B, the tangential stress has the same situation as that in case A as shown in the
Figs.4.
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Fig. 3 The tangential stress of with various diffusion times for case A. for (a) k =1.2 (b) k =2 (c) k = 4.
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Fig. 4 The tangential stress of with various diffusion times for case B. (a) k =1.2 (b) k=2 (c) k = 4.

3.3. Axial stresses N N
For cases A and B, some values ofc,,/[VEC0/3(1-V)] predicted by Egs. (15) and (19) are plotted againstr and r

for k=1.2, 2 and 4, at various time as shown in Figs. 5 (a)-(c) and Figs. 6 (a)-(c), respectively. As shown in Figs. 5, the axial
stress component 6,, is tensile in the region near both surfaces and compressive in the middle region of hollow cylinder. The
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axial stresses decreases with increasing time. The profiles of stress component o,, for zero axial force are similar to those of
ogp because o,, = o, +oge and the value of o,, is smaller than the value ofoyy by a factor of 30 as shown in Figs. 6.
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Fig. 5 The axial stress of with various diffusion times for case A. (a) k =1.2 (b) k=2 (c) k = 4.
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Fig. 6 The axial stress of with various diffusion times for case B. (a) k=1.2 (b)) k=2 (c) k= 4.

3.4. Maximum shear stresses
Because only the principal stresses exist in the diffusion processes and according to the Mohr’s circle
constructions [13], the maximum shear stress are

EGEE_G-HJHE(:G}EL (G_z_grrjfllz and (G-z_gﬁﬁ:'fz-
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For zero axial force,

Oz —0p =0Ogg. Uz ~Ogg =0, and Tyr. Tag

are shown in Figs. 1- 4 for case A and B respectively.
For cases A and B, the maximum shear stress component 6,4 can be expressed in the following.

For case A:

(Cop—on)/2_, 1 = 23§ (kaay) )
\/ ) _ *\2
VEC, ke —1n=l(ac,r ) Jg(aan)[Jg(aay)+Jgkaay,)]
31-v)

% 36 (kae)[Io (kaarn)Vy (@anr”) ~Yo (kacn) Jy (@anr )]

n-1 aanr [I8(aan) - I¢ (kaay)]
® 233 (kaay) 3 J¢ (kaary g (aapr”)
n=1(acrnr ) Jo(acn)[3§ (acrn) — 3§ (kaay)] 2 n=13§ (acry) - 3§ (kacry)
xexp[~(ac)?7] 0
Where
Uo(aanr ):Jo(aanr ){O(kaan)—Yo(aanr )Jo(kaan)
. Dt
a a a
For case B:
(cgg —orr)/2 g 102 2Jo (kaay) N
VEC, k2 —1n=1(kaayr )?[Io(acy) + Jg(kacy)]
3(1-v)

% Jo(@an)Jo(kacn) g (kacn)¥y (kaanr ™) ~Yo (kaan)Jy (kaat )]
n—1 kaoryr™ [I8 (aapn) — I8 (kaay)]

S 234 (kaap) R Jo(aan)do(kaay)Ug(kaapr™)
n=1(kacryr)2[I8 (aan) - Id (kaay)] 2n=1  JI&(aapn)- I3 (kaay)

x exp[~(aay)?7] -

where

Uo(kaan r**): Jo(kaan r**){o(kaan )—Jo(kaay Yo (kaan r**)

*x

r = k:

r
b

According to Egs. (20) and (21) , for cases A and B, the maximum shear stress component ,(cgg-0)/2=0,, are
plotted against and for k = 1.2, 2 and 4, at various time as shown in Figs. 7 (a)-(c) and Figs. 8 (a)-(c), respectively.
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As shown in Figs. 7, for case A, the maximum shear stress componento, is tensile in the region near both surfaces and
compressive in the middle region of hollow cylinder. The stress distribution decreases with increasing time. For case B, the
maximum shear stress has the same situation as that in case A as shown in Figs. 8. Comparison of the maximum shear stress
in cases A and B, case B is larger, for the same k during the decay transient state. The curves ofc,are similar to parabolic
curves for k = 2 (see Fig. 7 (b)). For case A, it is found that the slope of curve near the outer surface is steeper in the brief
times, but the slope of curve near the inner surface is constant for k = 1.2. Conversely, for case B, the slope of curve near the
inner surface is steeper in the brief times, but the slope of curve near the outer surface is constant.
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Fig. 7 The maximum shear stress of with various diffusion times for case A. (8) k=1.2 (b) k=2 (c) k =4.
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Fig. 8 The maximum shear stress of with various diffusion times for case B. (a) k =1.2 (b) k=2 (c) k = 4.

V. CONCLUSIONS

The diffusion-induced stress in hollow cylinders with different k for decay transient states has been investigated.
Two situations are considered: one is a diffusion process, with the initial concentration described by C=CqIn(r/a)/In(b/a), in
which the solute diffuses from outer into inner surfaces when steady state has finished and zero concentrations at both
boundary surfaces and the other with the initial concentration described by

C=-CyIn(r/b)/In(b/a), in which the solute diffuses from inner into outer surfaces when steady state has finished and
zero concentrations at both boundary surfaces were studied. Analogues to thermal stresses, the diffusion-induced stress
developed in hollow cylinders for decay transient states are derived for zero axial force. Through the mathematical analysis
and figures plotting, a few conclusions are drawn:
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For both cases A and B, the radial stress component o,, is tensile in the region near the inner surface and
compressive near the outer surface. The curves of o, are similar to sine curves and for the greater k the more T is
needed to reduce the radial stresses.

For cases A and B, the tangential stress component o and the axial stress components,, are tensile in the region
near both surfaces and compressive in the middle region of hollow cylinder. The profiles of 6,, stress component
for zero axial force are similar to those ofcgy .

For both cases A and B, comparison of the maximum shear stress in cases A and B, case B is larger, for the same k.
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