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Abstract:-In the previous paper, the use of matrix iteration to determine the natural frequencies of vibration of 

continuous beam system using the concept of wave propagation in a prismatic bar is reported. The natural 

frequencies of vibration obtained from the formulated model were compared with the values obtained from 

literature and those of the exact solution. An error of 28% and 30% was observed when the fundamental frequency 

of vibration obtained from the previous model was compared with that obtained from literature and the exact 

solution. In the present study, an improved mathematical model is formulated to determine the fundamental 

frequency of vibration of a continuous beam as a structural system with distributed mass using mode shape 

concept. In the course of the system’s oscillation, the displacements produced by the force of inertia is assumed to 

have the shape of a particular vibration mode and in harmonic with the particular modal frequency. A numerical 

example was given to demonstrate the applicability of the present model. The fundamental frequency value 

obtained from the present model was found to improve by 27.4% and almost identical to the exact fundamental 

frequency value and that obtained literature.  
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I. INTRODUCTION 
Resonance is a very dangerous phenomenon that occurs if the fundamental value of the natural frequencies of 

vibration is exceeded by the frequency of excitation. Resonance results in large amplitude displacement of structures leading 

to development of large stresses and strains in the affected structure that may eventually result to structural failure thereby 

affecting the performance of the structure or structures in service. The dynamic analysis of a continuous beam as a system 

with distributed mass to get the fundamental vibration frequency is always cumbersome because of the difficulty involved in 

the mathematical manipulations. The difficulty that is encountered in the mathematical process is due to infinite number of 

degrees of freedom [1-9]. The dynamic analysis is made simpler using lumped mass concept. The original beam with 

distributed mass is now converted to a weightless system with masses lumped at chosen points called the nodal points. The 

weightless beam system now has a finite number of degrees of freedom [10]. The degree of freedom is numerically equal to 

the number of independent geometric parameters that describes the positions of all masses for all possible displacements of 

the structural system at any point in time. The present model is said to be defined if the nodal lumped masses and their 

coordinates are known [11]. 

In this paper, matrix iteration is employed to determine the fundamental frequency of vibration of a continuous 

beam system undergoing self excited vibration. The algorithm involved is simple and can be achieved manually most 

especially when finite number of degrees of freedom is involved. 

 

II. 2. Formulation of Mathematical Model 

For an undamped MDOF beam system (Figure 1) with n degrees of freedom, displacements are assumed to be 

linear functions of the forces of inertia, the equations of motion of the lumped masses at chosen nodal points are given by: 
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where: 

iXm    Inertia force generated by an ith particular oscillating mass. 

iX displacement produced at ith  mode by inertia force generated by an ith oscillating  mass. 

iiij  , direct and indirect flexibility coefficient respectively. 
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The flexibility coefficients resulting from the forces of inertia at the individual nodal points are given by: 

 

 

 

 

 

 

Figure 1: Lumped masses at beam nodes. 
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The equation for undamped natural vibration frequency is given by : 

mK 2            (3) 

For an ith vibration mode equation (3) transforms to: 

mK i

2            (4) 

Multiplying both sides of equation (4) by an ith displacement Xi caused by an ith force of inertia  iX  transforms equation 

(4) to: 

mXKX iii

2            (5) 

The displacement that is produced by an ith oscillating mass has the configuration of an ith vibration mode and also in 

harmonic with an ith modal frequency. Therefore, 

ii FKX             (6) 

Equation (5) now becomes: 

mXF iii

2            (7) 

From equation (6), 

1 KF
K

F
X i

i
i           (8) 

where: 

iF   Force of inertia at ith mode 

1K Inverse of stiffness matrix 

Substituting for iF in equation (8) using equation (7) gives: 

iii XmKX 12            (9) 

Let the row vector of n dimensions 

 Tni XXXX ...,,, 21           (10) 

represent the vector of displacement in the  ith vibration mode. 

From  structural mechanics,   

1K            (11) 

where: 

  flexibility coefficient matrix. 

Without loss of generality,  

iiiiK 1
           (12) 

and  

ijijK 1
           (13) 

Equation (7) now transforms to:  

iii XmX  2           (14) 

Let 

hm             (15) 

Equation (13) represents the dynamic charcateristics of the weightless beam subjected to oscillating masses. 

Therefore, from equation (12), 

iii XhX 2            (16) 

For the first vibration mode i=1, and equation (5) becomes: 

1 2 i N 
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11             (17) 

where: 
ToX )111(1            (18) 

represents an arbitrarily chosen initial displacement vector.  

Let  oy  represent non-zero nth order displacement vector and let max oy max represent its largest displacement element. Let 

oX  be the vector obtained by when the entries of oy  are scaled by  oy max. 

Using equation (16), 

maxo

o
o

y

y
X            (19) 

The generalized sequence of improved displacement vectors are given by equations (18) and (19). 
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Let  
1ky  be a sequence of approximations to ny  with 

nky )(lim            (22) 

k  

where: 

...),2,1(2  nnn            (23) 

From equations (19) and (21), the natural frequency corresponding to a given vibration mode is given by: 

  5.0

1 kn y            (24) 

and the fundamental value (n=1) is given by  

  5.0

11  ky            (25) 

From statical consideration, the ith modal mass at ith nodal point over an ith weightless beam segment is given by: 

 jii llm 
2


          (26) 

where: 

 = distributed mass intensity of the beam in Kg/m. 

 

III. CONCLUSION AND RESULTS 
An Example for Numerical Study 

A numerical example is used to demonstrate the applicability of the present formulation. A simple supported 

uniform beam having a distributed mass intensity of 4.75Kg/m as shown in Figure 2 is used for this numerical study[1]. 

 

 

 

 

 

Figure 2: A 3 degrees of freedom beam system for numerical study. 
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Figure 2: Derivation of flexibility factors 

 

The flexibility matrix is symmetric. Therefore,  
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Using equation (2), the flexibility factors are obtained as follows: 
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From equation (26), 
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The flexibility coefficients at the three nodal points are now arranged in matrix form as follows: 
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From equation (15), the dynamic matrix is given by: 
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Using equation (18), multiplication of dynamic matrix with assumed initial unit displacement vector gives: 
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Using 61.7  as the maximum displacement in the non zero displacement vector, the improved displacement vector is 

given by: 

 T
EI

X  59.3,10.6,59.3
1

2   

Again, the maximum displacement is 10.6 . The new improved displacement is: 
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Using equation (23), 
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Table 1: Comparison of results 

Fundamental 

frequency  
Present model Sule 2009 Osadebe 1999 Exact solution  



EI
4050.0  



EI
515.0  



EI
4039.0  



EI
3948.0  

 

IV. DISCUSSION OF RESULTS 
Table 1 shows the comparison of result obtained from the present model with Sule [2], Osadebe [1] and the exact 

solution [3]. The percentage errors of 27.5% and 30.45% in the previous model[2] compared with the control points [1] and 

exact solution [4] have reduced to 0.272% and 0.258% in the  present formulation showing the effectiveness of the present 

model in the determination of the fundamental frequency of vibration of a continuous beam. The disparity between the result 

of the present model and the previous model[1], Osadebe [2] and the exact solution[3] may be due to difference in the 

assumptions used in the model formulation. 

 

V. CONCLUSION 
In conclusion, the present model produces a result that is almost identical with those of the control points [1] and 

[4] and improves on the previous result of fundamental frequency [2] by 27.4%, showing higher predictive ability of the 

present model. The present model can be used to predict the fundamental frequency of vibration of a multi-storey building. 
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