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Abstract:- Cancer is the leading cause of death for human being in worldwide, because the cause of the disease is 

unknown and the early detection of cancer is also tedious. To save the people around world many diagnosis and 

treatment techniques was developed. In medical image processing ultrasound images is the most popular 

development area. The key point ultrasound image is referred as the detailed study of imaging function and 

structure of the image in the real world entity. Ultrasound imaging techniques is one of the tools to diagnose the 

cancer and to detect and identify the malignant and benign tissue in the human body. To improve the treatment of 

cancer computerized ultrasound screening techniques are used. 
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I. INTRODUCTION 
Cancer is the public health problem for men and women in this century. According to the survey more than 8% of 

women will affect breast cancer [1][2][150]-[153], 29% of men will affect prostate cancer [3][4][5][6][7], 31% of women 

will affect cervical cancer [8] and 70% of women will affect ovarian cancer [9]. Since the causes of cancer still remain un-

known, better treatment can be provided to detect from the early stage [10][11][12][13][14]. The most modality for detecting 

the diagnosing is mammography [10] [15] [16]. To the low specificity mammography many biopsy operations are used 

[17][18][19]. Currently one of the best alternative method is called ultrasound imaging technique, and it will show cancer 

detection[20][21][22][23][24].According to the survey showed that more than one out of every four researches using 

ultrasound images. It provided accuracy results [25]. Ultrasound techniques are more convenient and safer than 

mammography [26].It is also cheaper than mammography. Different countries and continents used for ultrasound 

[27][28].ultrasound are more sensitive [29][30] and faster method. Hence it is valuable for people than 35 years of age 

[31].Elastography is an automatic method for measuring the elasticity of tissue based on analysis of ultrasound tissue 

compression [32][33][34].Recently developed some of the computerized  approaches [35] used for ultrasound imaging. 

This survey focuses different approaches for breast [36], prostate [37], cervix [8], and ovarian [9] cancer detection 

and classification method for Ultrasound images. Usually this involves four stages. From these stages we can evaluate the 

result, which is shown in figure 1. 
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Input Image Output Image 

 
 

Fig.1.Computerized system for cancer detection and classification 
 

1) Image preprocessing: Ultrasound images are affected by noise such as speckle noise [38][39],impulse 

noise[40],multiplicative noise[40].To suppress the noise some filtering techniques [40][41][42] , wavelet domain 

techniques[43]-[45][46][47][48] and de-speckling methods[49] are used. 

2) Image Segmentation: This method sub categories the image into number of small portions and differentiate the 

object from the background [50]. 

3) Feature extraction and selection: This stage we extract some features from normal tissue and abnormal cancer 

tissue. So extracting and selecting some essential features is very needful for classification. The survey features are 

listed in table 11. 

4) Classification: After the feature extraction we classify the tissue we decide and make a conclusion of normal and 

abnormal. 

In computer processing system only the texture features are used as inputs [26][51].  

 

II. PRE-PROCESSING 
          The pre-processing of breast, prostate, cervix and ovarian ultrasound images consists of noise reduction and image 

enhancement. Speckle in the form of noise generated by a number of scatterers [52] with random phase within the resolution 

cell of ultrasound beam [40]. Many speckle reduction techniques are listed in table 1 and the noise reduction techniques 

advantages and disadvantages are listed in table 2. 
Table1 Speckle Reduction Techniques 

cancer Noise Reduction Techniques                Methods 

Breast cancer Speckle noise[38] 

Multiplicative noise[40] 

Filtering methods[40]-[42] 1. Linear filter[57] 

2.Nonlinear filter(order statistic filter[40]  
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Impulse noise[40] 

 

Wavelet domain techniques[43]-[48] 

 

1.Wavelet shrinkage[43][58] 

2.Wavelet de-speckling under Bayesian 

framework[46][47][44][48][45][59] 

3.Wavelet filtering and diffusion: Wiener filter[38] 

Compounding approaches[56] Spatial compounding[56] 

Prostate cancer Speckle noise[39] 

White Gaussian noise[49] 

 

Filtering methods[60][61] Nonlinear filter: Median filter[62] 

 

De-speckling method[49][68] 1.Wavelet method[63][64] 

2.Computation method[65] 

3.Least square method[66] 

4.Structural based approaches[67] 

5. Novel Monte Carlo de-speckling algorithm[68] 

Cervical cancer Speckle noise[8] Filtering method[69] Linear filter: Low pass filter[70] 

Ovarian cancer Speckle noise[71] Wavelet based Techniques[72] 

 

Thresholding algorithm[71] 

Table 2 Comparison of different noise reduction techniques 

cancer Method Description Advantages disadvantages 

 

Breast 

Filtering methods[40]-[42] 

 

Reduce speckles Simple an speed Single representation is difficult to 

differentiate signal from noise 

Wavelet domain 

techniques[43]-[48] 

Remove noise by 

modifying the wavelet 

co-efficient 

Statistic soft the signals are 

simplified 

DWT and IDWT computations increase 

time complexity 

Compounding approaches[56] Average images are 

obtained 

Noise and signals are 

processed at different scales 

Need hardware support. Increase time 

complexity and reconstruction 

prostate Filtering method[60][61] 

 

Reduce speckles 

 

Simple and faster Single representation is difficult to 

differentiate signal from noise 

De-speckling method[49][68] Remove multiple and 

additive noise 

Better performance and 

faster 

Difficult to identify abnormal tissue 

pattern 

cervix Filtering method[69] Reduce speckle Faster convergence rate Difficult to identify abnormal tissue 

pattern 

Ovarian Wavelet based techniques [72] Reduce speckle 

 

Reduce image contrast, 

detailed resolution 

Difficult to identify abnormal tissue 

pattern 

2.1 Filtering techniques 

All the filters are spatially in nature. It can be divided into linear and nonlinear filters. 

a)  Linear filters 

Adaptive mean filter (AMF):To eliminate the blurring effect we used AMF. The Lee [53], Kuan [54] and frost [55] filters 

are well known examples of adaptive mean filters.  
Low pass filter: It is used to reduce speckle noise and blurring the edges [70]. The stick techniques are used to reduce the 

noise and improve the edge information. They use the linear projection operation. 

b) Non Linear Filters: 

Order Statistic Filter: This filter reduces noise. The median filter is one of the order statistic filters. It preserves the edge 

sharpness and produce less blurring than median filters [40], specifically it is effective but most of the Ultrasound image is 

affected by impulse noise.  

2.2 Wavelength Domain Techniques 

The discrete Wavelength transform (DWT) [63][64] translate the image into sub band consisting of a set of details 

sub band orientation and resolution scale wavelet coefficient [73]. It is a best method for separating noise from an image.  

Wavelet Shrinkage: 

It is based on thresholding [71]. It suppresses the coefficient noise and enhances the image features. The drawback 

of thresholding methods is choice of threshold is usually done manual. 

Wavelet de-speckling under Bayesian network 

It contains Bayesian rules [44]-[48][59] here we apply the Wavelet coefficient statistics. This approach assumes 

that p is a random variable with PDF. The two sided generalized Nakagami Distribution (GND)[48][74]-[77] is used to 

model the speckle wavelet coefficient or modelled by generalized Gaussian distribution (GGD). The disadvantage of 

Wavelet de-speckling under Bayesian network is that is relies on prior distribution of the noise free image.  

Wavelet filtering and diffusion 

 This method is used to reduce speckle noise [38]. Wiener filtering is applied in the wavelet domain [[63][64]. 

Different speckle images in the image domain and wavelet domain is presented [63][64].It compared wavelet coefficient 

shrinkage and several standard filters [Lee, Kuan, Frost, Geometric, Kalman, Gamma etc]. The disadvantage of wavelet 

based de-speckling method is the time complexity is increased during transform operations. 

2.3 Compounding approaches 

 In this method we produced several images of the same region that are partially correlated or non- correlated and 

averages to form single image. 3D spatial compounding is adopted to reduce speckle noise in 3D ultrasound images [56]. 

2.4 De-speckling methods: 
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Contrast ultrasound diffusion: 
The accuracy of parameter distribution[155][156] is determined by temporal characteristics of IDC noise [157][158]. 

Computation method 

Geometric based diffusion techniques are used to reduce speckle and improve the Transrectal ultrasound image 

[65]. Order statistics filtering approach is used for computation technique. 

Least square method: 

It is an effective method to suppress the speckle and we get the anatomical characteristics of an image [66]. 

Structural based approaches: 

 It is based on boundary enhancement and reduced speckle noise for the Ultrasound images. From this we extract 

the structural features such as contour, line and boundary detection [66]. 

Monte Carlo de-speckling algorithm: 
The novel Monte Carlo de-speckling algorithm [86] provides image acquisition particularities specifically noise 

statistics of TRUS images, it allowing better speckle noise suppression.  

To measure the performance of the TRUS image applied signal to noise ratio (SNR), contrast to noise ratio (CNR) and edge 

preservation( α) 

SNR (f0)=10 log10(var(fref)/var(f0-fref)) 

frefvariance of the reference speckle free log envelope image, f0-frefnoise variance 

CNR=1/R /√rn2+rb2} 

,rb2
Mean and variance of prostate region, , rn2

mean, variance of the nth region 

α ={∑(£2fref-£2’fref)( £2fo-£2’fo)}/ {√∑ (£2fref-£2’fref)2. ∑ ( £2fo-£2’fo) 2.} 

£2fref, £2folaplacian operator on reference speckle free log envelope image and reconstruction speckle free log envelope 

image, £2’fref, £2’fomean value 

Performance measures for different filters SNR, CNR and α are shown in table 3 
Table 3 Performance measures for different filters SNR, CNR and α 

Method  S-SNR (dB) CNR (dB) α 

Original 

Adaptive median filter 

Enhanced Frost 

Wavelet 

Despeckling method 

13.75 

16.92 

19.64 

17.94 

22.84 

3.69 

5.39 

7.01 

6.06 

9.68 

N/A 

1.40 

1.56 

1.61 

1.98 

 

2.2 Image Enhancement 

 As stated in the beginning of the pre-processing section, many methods enhance the image and remove speckle at 

the same time. A contrast enhancement algorithm based on Fuzzy logic and characteristics of ultrasound images [84] were 

proposed. Experimental results show that methods could effectively enhance the image details without over or under 

enhancement. 

III. SEGMENTATION 
In segmentation methods [85][86][149] divide the image into number of small segments. The goal of segmentation 

is to identify the correct areas and to analyse the diagnosis. This method provides neural network segmentation [87]. The 

different segmentation methods are listed in table 4. 
Table 4 Different segmentation methods 

cancer Segmentation Techniques 

Breast Active contour model[88]-[91] Level set method[88] 

Markov random field[92][93] Iterative segmentation technique[92][93] 

Gibbs random field method[92] 

Prostate Information tracking method[94][95] Level set method[94][96][97] 

Classical approach[87] Supervised machine learning approach[87][98] 

Cervix 

 

Histogram thresholding[8] 

 

Threshold value: optimal threshold, gray level threshold variation[8] 

Region based segmentation[8] Range selection[8] 

Ovarian Unsupervised segmentation[99] Biomarkers[99] 

Active Contour Model 

 It is an edge based segmentation method .This approach minimizes energy associated with current contour as the 

sum of the internal and external energies. Level set method [88] is employed to improve the active contour segmentation for 

ultrasound images.  

Markov Random Field (MRF) 

 Markov random field model has been used for US image segmentation [92][93].The algorithms based on Markov 

random filed and Gibbs Random field [92] was adapted to segment the US images.  

Information tracking method 

 The ultrasound image u(x) to be scalar function in the subset of R2.M to be the map which transforms u(x) into its 

corresponding feature image I(x)=M[u(x)], it can be viewed using a vector valued image[85]. 

Classical approach  

 It is an essential tool for segmentation. It is used to classify the pixel inside and outside of the prostate gland [87]. 
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Histogram Thresholding 

Histogram thresholding [100] is one of the widely used techniques for monochrome image segmentation [101]. 

Histogram thresholding was proposed for segmenting US images [102]. 

Region based segmentation: 

In cervical cancer we use a region based method to segment the left part of the cervical ultrasound image where 

the internal os is located. A gray level value is selected from the histogram of the image.  

 The advantages and disadvantages of various segmentation methods are represented in table 5. 
Table5 Advantages and disadvantages of various segmentation methods 

cancer Methods Descriptions Advantages Disadvantages 

Breast Active contour model[88]-[91] Deformation mode is utilized Extract lesion with different 

shape 

Slow and repetition process 

Markov random field[92][93] Based on intensity statistics Accurate Complex and time consuming 

Prostate Information tracking 

method[94][95] 

Tracking the features Maximum accuracy and 

efficiency 

complexity 

Classical approach[87] Classify the image pixel Extract the cluster the 

features  

over segmentation done by this 

method  

Cervix Histogram thresholding[8] Segment the image based on 

threshold value 

Simple and speed Not get the better result 

Region based segmentation[8] Segment the image based  on the 

range value 

Common findings of 

variable size collection and 

a proximal region 

Segmentation results many 

disconnected areas 

Ovarian Unsupervised segmentation[99] Predict the prognosis and 

segment vascular stained region 

Effectively and accurately 

segment the region 

To represent hierarchical data it takes 

more time. 

 

IV. FEATURE EXTRACTION AND SELECTION 
 Feature extraction and selection [154] are important steps in cancer detection and classification. Textures extracted 

from the RF series [103] and neural network classifiers used for detection of prostate cancer [103].In the cervical cancer 

most of the edge detection algorithms use a linear projection operation. To extract some features such as geometric, 

statistical, texture and histogram features [104][105].In ovarian cancer feature selection algorithms are applied for the two 

data sets and increase the classification accuracy. To evaluate the reduction and feature selection [96] techniques used simple 

classifier. The survey features are listed in table 6. 
Table 6 Feature extraction and selection methods 

Cancer Feature Description 

Breast Texture features(TF) TF1: Auto Covariance coefficient[26][51][55] 

TF2: Block difference of inverse probabilities(BPID)[51] 

TF3: Block variance of local correlation coefficient(BVLC)[51] 

TF4: Mean and variance of order statistics after wavelet decomposition[106] 

TF5: Auto correlation in depth of R(COR)[ 107][108][109] 

TF6: Posterior acoustic behavior, minimum side difference (MSD) or Posterior Acoustic 

Shadow[25][ 107][109]-[111] 

TF7: SGLD matrix based features: Correlation, energy, entropy, sum entropy, difference 

entropy, inertia and local homogeneity[[26][112] 

TF8: GLD matrix based feature: Contrast, mean ,entropy, inverse difference moment and 

angular second moment[26] 

TF9: Fractal and dimensional related features[112]-[115] 

TF10:entropy(ENT), Contrast(CON), Sum average(SA), Sum entropy(SENT)[116] 

Morphologic features(MF) MF1: Spiculation[109][117] 

MF2: Depth to width ratio and width to depth ratio[25][107][ 109] [111] [118][119][120] 

MF3: Number of lobulations [109][110][121][122] 

MF4: Margin sharpness[123] 

MF5: Margin echogenicity[123] 

MF6: Angular variance in margin[123] 

MF7: Area of lesion[110][120] 

MF8: Normalized radial gradient along the margin[107][109][111] 

MF9: Margin circularity[110] 

MF10: Degree of abrupt interface[121] 

MF11: Angular Characteristics[121] 

MF12: Tumor contour: shape, orientation, margin(tumor circularity, standard deviation, area 

ratio, roughness index)[124] 

Descriptor Features(DF) DF1: Non circumscribed or spiculated image[25][31][118]-[120][125][126] 

DF2: Shape(round, oval or irregular)[25][31][118][119][125][126] 

DF3: Presence or calcifications[25][118][125][126] 

DF4: Posterior shadow[118][119][126] 

DF5: Decreased sound transmission or acoustic transmission[31] 
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DF6: Echogenecity[31][118][120][126] 

DF7: Heterogeneous echo texture[118][120][125][126] 

DF8: Thickened cooper ligaments[120] 

DF9: Distortion echogenic halo or rim of surrounding tissue[31][118] 

DF10: Micro lobulation[118] 

Prostate Spectral Features RF(RF)  RF-RF4->average value normalized spectrum 

Low, mid low, mid high, high 

RF5->intercept 

RF6->lope of line 

Fractal Features(FF) Higuchi’s algorithm: Mean Length(max=16)[127][128] 

LF Features (Lizzi, Feleppa)(LF) LF1,LF2,LF3[53] 

Zero frequency, average lobe, mid band value 

LF and RF features: Spectral analysis, sliding hamming window[129] 

Textual Feature(TF) TF1: Statistical Feature: Mean, Standard deviation, skewness, Kurtosis[103] 

TF2: Coherence Matrix: Correlation, energy, contrast, homogenity[103] 

TF3: ROI: Color Map[129] 

Morphologic features(MF) Shape priors, principal component analysis(PCA)[ 130] 

Cervical cancer Geometric features(GF) Primitive features: corners, edges[8] 

Texture features(TF) Parameter control function: computer vision, range, average distance, stick size[8] 

Statistical features(SF) Mean, Standard mean error or percentage[131] 

Histogram features(HF) Bonferroni approach: pair-wise comparison,  Correlation co-efficient Contrast, tumor range, 

tumor volume, vascularization index(VI),flow index(FI), Vascularization flow 

index(VFI)[131] 

Ovarian Cancer Statistical Features(SF) Mean, standard deviation[132] 

Morphologic tumor indexing 

features(MTI) 

Find observer variation, Morphological scoring system[133]-[136] 

Morphologic features(MF) Wall structure ,cyst wall thickness, septation, echogenecity[137] 

Structural Features(STF) Ovarian volume, cyst wall septae[138] 

Multiple Regression features 

(MRF) 

Weighted scoring[138] 

Texture Features 

Texture is the basic and traditional techniques [139]. In breast and prostate cancer the texture is used for tissue 

analysis [94][103].In cervical cancer a parameter control function is used to measure the adjacent pixels and adjust the length 

of the stick. It also used to estimate the average distance between the adjacent pixels and also adjust the stick size [8]. 

Morphologic frames 

In prostate cancer a maximum posteriori estimation framework is used to find the contour.i.e, a boundary of the 

prostate that are closely matches the prior shape model [130].In ovarian cancer we concentrated four different morphologic 

characteristics such as wall structure, cyst wall thickness, septation and echogenicity[137]. 

Descriptor features 

 Descriptor features are easier to understand because they are actually the empirical classification of the radiologists. 

Spectral Features RF (RF)  

 The RF time series (RF1-RF6) corresponding to each spatial sample of RF data is a discrete signal of length M, 

where M is the number of frames acquired in the time series. We deducted the mean of the time series from all samples. The 

first four RF time series features (RF1,RF2,RF3,RF4) were the average value.  

Fractal Features (FF) 

 To extract FF Features the computed the mean length of the time series scales. The computed the FF of all the RF 

time series within an ROI and averaged them to acquire one feature per ROI [128]. 

LF Features (Lizzi, Feleppa)(LF) 

 Lizzi, Feleppa and their colleagues have shown that the intercept extrapolated to zero structural (LF1),average 

slope(LF2) and mid point value(LF3) of a line fitted to the mid band portion of the structure. 

RF Time series features (TS) 

LF features and RF time series features are both computed based on spectral analysis of echo signals [141], they 

are fundamentally different. The LF features are computed based on spectral analysis, all originating from the same spatial 

location in the tissue. LF features are also called spectral features. 

Geometric features: 

In Geometric features due to the relative fixed position and high contrast between the internal cervical os and 

adjacent tissues, the location of the internal cervical os is desirable. Hence the geometric features of the cervix such as corner, 

edges are applicable in stepwise fashion [104]. 

Statistical features: 

 In SF he statistical features are analyzed using the package for the social sciences. Features are represented as 

mean, standard error mean or percentage [143].  

In ovarian cancer all continuous data expressed as mean and standard deviation. Statistical features in ovarian 

cancer screening used four terms such as true positive, false positive, true negative, false negative[133]. 
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Histogram features: 

  These features are used to distribute the data into different places and we can calculate the amplitude of the echo 

signals. 

Morphologic tumor indexing features 

Most ovarian masses deducted by ultra sound screening are benign. It is an effective method that decreases 

observer variation and false positive results. Here used morphologic scoring system which standardizing and quantifying the 

interpretation of ultra sound images.  

Structural Features 

Morphologic index system provided three structural characteristic including ovarian volume, cyst wall and septae. 

It provides high sensitivity at specificity [134]. 

Multiple Regression features 

It is a most accurate method to simplify the index and apply weighted scoring to the structural component. The 

sensitivity of the index was 97% and specificity was 77%. Here using weighted scoring system for testing ovarian tumors 

[136]. 

V. CLASSIFIERS 
 After the extraction of feature and selection process we have to classify the images into lesion /non lesion or 

benign/ malignant or normal/ abnormal classes. Lesion detection [144] is necessary before the classification. We summarize 

the different ultrasound cancer detection and classification techniques are listed in table 7. 

Linear Classifiers: 

 Frequently used linear classifiers for breast cancer detection and classification are linear discriminant analysis [174] 

and logistic regression (LOGREG) [145]. The main idea of LDA is to find the linear combination of the features which best 

separate two or more classes of the data.  

 Artificial Neural Networks: 

 Artificial neural networks are the collection of mathematical models that imitate the properties of biological 

nervous system and the functions of adaptive biological learning [10]. In the field of breast cancer detection and 

classification, three types of artificial neural networks are frequently used: Back-Propagation neural network, self-organizing 

map (SOM) and hierarchical ANN [123][146]. 

Bayesian Neural Network: 

 The idea behind BNN is to cast the task of training a network as a problem of inference, which is solved using 

Bayes’ theorem [146]. A Bayesian neural network is more optimal and robust than conventional neural networks, especially 

when the training data set is small. 

SVM Classifier 

 SVM training problem[104] allow for misclassification of noisy. In [51][55][112], SVM [103] was applied to 

classify the malignant and benign lesions. This method is 70% faster than ANN method.[112] proposed fuzzy support vector 

machine(FSVM) based on a regression model. The drawback of SVM is generated training errors.  
Table 7 Classification Methods 

cancer Classifier features 

 

 

 

 

 

 

 

 

Breast 

Linear Classifier: Construct decision boundaries by optimizing certain criteria: LDA 

and LOGREG[25][106][120][121] 

 

Text Features(TF6-TF8,TF10,TF12) morphologic 

features (MF2,MF5-MF7)and descriptor features (DF1-

DF4,DF6-DF7,DF9,DF12) 

ANN: Construct non linear mapping function: Back Propagation, SOM and 

hierarchical ANN[26][113][123] 

Texture features(TF1,TF4,TF5], morphological 

features[MF1-MF4,MF8-MF13] 

BNN: A probabilistic approach to estimate the conditional probability density 

function[109] 

Texture features(TF11,TF12,TF14], morphological 

features[MF2,MF5,MF14] 

SVM: Map the input data into a higher dimension space and seek an optimal hyper-

plane to separate samples[51][55][110][112] 

Texture features(TF1,TF7,TF19] 

Template matching: Uses retrieval technique to find database and assign query 

images[26] 

Texture features(TF1-TF3,TF12,TF13],morphological 

features[MF4,MF13,MF15] 

Human Classifiers: Radiologists or Physicians use certain criteria to classify 

ultrasound images[31][118][119][125][126] 

Texture features(TF1,TF7,TF9,TF15,TF16] 

Descriptive features[FD1-FD14) 

Morphological features(MF2) 

Prostate 

 

SVM Classifier[103] Texture features(TF1,TF2,TF3), morphological 

features(MF), RF time series features 

Bayesian classifier[103] ROC curve: generate the color map[52] 

Decision threshold[52] 

Cervix MAP(maximum posteriori techniques algorithm)[147] Smoothness/Irregularity of lesion margins [147] 

Fourier descriptors of curvature smooth (black) and 

irregular (red) curvature segments[147] 

Ovarian Histologic classifier[133] 

Statistical classifier[148] 

Screen results (positive, Negative) [133] 

Mass Spectrometry[148] 

Template matching: 

 To differentiate the malignant and benign lesions image retrieval techniques are used. Here used feature vector to 

represent the query image and the images in the database. The advantage of the image retrieval technique is to classify breast 
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lesions there is no training is needed. The disadvantages are the running time of the algorithm increases, it requires similar 

platform to run the images. 

Human classifier: 

 The radiologist classifies the lesion using certain criteria. They are not a component and the human classifier to 

distinguish the malignant and benign lesions. 

Bayesian classifier  

 It is a statistical classification method. The color maps are generated based on the ROC curve. We needed 

posterior probabilities of normal and cancer classes.  

 

VI. EVALUATIONS 
 The images obtained with or without spatial compounding technique perform different operations in computer 

system [86]. The ROC curve is most frequently used because of its ability. The performance evaluation’s shown in figure 2. 

 

 

 
Fig.2.Performance Evaluation f different cancer 

 

VII. SUMMARY 
 The survey summarizes the different ultrasound cancer evaluation and the performance results are listed in table 

8.The various measurement techniques are shown in figure 4. 
Table 8 Performance matrices 
Measurement techniques Breast Prostate Cervix Ovarian 

Accuracy (%) 

Specificity (%) 

Sensitivity (%) 

Positive predictive value (%) 

Negative predictive value (%) 

94.25 

91.67 

96.08 

94.29 

94.23 

80.5 

79.8 

81.1 

29 

95 

92 

93 

92 

72 

98 

90 

81 

98.9 

9.4 

99.97 

 
              Fig.4.performance of ultrasound cancer 

 

VIII. FUTURE DIRECTIONS 
 Currently the field of cancer computerized system using ultrasound images, most of the work concentrates on 

detection and classification. One of the future directions is high resolution ultrasound imaging devices can support detection 

of abnormal tissue. Three dimensional ultrasound imaging is another future direction which can provide more valuable 

information. We include more features is another future evaluation such as acoustic shadowing, punctate calcification, duct 

extension and Microlobulation etc. 
 

IX. CONCLUSION 
 In this paper we reviewed computerized cancer detection and classification using ultrasound images in the 

literature. The techniques developed in the four stages (pre-processing, segmentation, feature extraction and classification) 

are summarized and the advantages and disadvantages are discussed. Different performance matrices are discussed. It is 

useful for the researches in image processing and radiology. 
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