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I. INTRODUCTION AND STATEMENT OF RESULTS 
The following result, known as the Enestrom-Kakeya Theorem [5] , is well-known in the theory of distribution 

of zeros of polynomials: 

Theorem A: Let  
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j

j

j zazP
0

)(  be a polynomial of degree n such that 

                            0...... 011   aaaa nn . 

Then P(z) has all its zeros in the closed unit disk 1z . 

In the literature  there exist several generalizations and extensions of this result. Recently, Choo and Choi [1] 

proved the following results: 

Theorem B: Let  
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)(  be a polynomial of degree n such that 

either 132 ...... aaaa nn    and 0231 ...... aaaa nn   ,if n is odd , or 

022 ...... aaaa nn    and  1331 ...... aaaa nn   , if n is even. Then P(z) 

does not vanish in 
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Theorem C: Let 
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)(  be a polynomial of degree n with jja )Re(  and  jja )Im( , 

j=0,1,2,……,n, such that   

                                   011 ......   nnk , 

                                   011 ......   nn . 

Then P(z) does not vanish in  
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Theorem D: Let 
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)(  be a polynomial of degree n such that for some  , 
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 ja , j=0,1,……,n, 

and for some 1k , 

                  011 ...... aaaak nn   . 

Then P(z) does not vanish in  
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M. H. Gulzar [3,4] proved the following results: 

Theorem E: Let 



n

j

j

j zazP
0

)(  be a polynomial of degree n such that for some 11 k , 12 k , 

10 1  , 10 2  ,either 11321 ...... aaaak nn    and 022312 ...... aaaak nn   ,if 

n is odd , or 01221 ...... aaaak nn    and  123312 ...... aaaak nn   , if n is even. Then 

for odd n, P(z) has all its zeros in  
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where  

     )()()(2)()( 1111011121̀1 aaaaaaaakaakK nnnnnn     

                 )( 002 aa  , 

and for even n, P(z) has all its zeros in  
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where 

     )()()(2)()( 0011011121̀2 aaaaaaaakaakK nnnnnn     

                 )( 112 aa  . 

Theorem F: Let 
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)(  be a polynomial of degree n with jja )Re(  and jja )Im( , 

j=0,1,2,……,n, such that   

                                   011 ......   nnk .                                    

Then all the zeros of P(z) lie in  
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Theorem G: Let 
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0

)(  be a polynomial of degree n such that for some  , 
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 ja , j=0,1,……,n, 

and for some 1k , 10   
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. 

Then P(z) has all its zeros in 
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        The aim of this paper is to generalize some of the above-mentioned results. More precisely, we prove the 

following results: 
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Theorem 1:  Let  



n

j

j

j zazP
0

)(  be a polynomial of degree n such that for some 11 k , 12 k , 

10 1  , 10 2  ,either 11321 ...... aaaak nn    and 022312 ...... aaaak nn   ,if 

n is odd , or 01221 ...... aaaak nn    and  123312 ...... aaaak nn   , if n is even. Then 

P(z) does not vanish in  
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a
z
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, if n is odd, 

and in 

011120011121

0
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,if  n is even. 

Remark 1: Taking 11 k , 12 k , 11  , 12  , Theorem 1 reduces to Theorem B. 

 If z is a zero of 
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Therefore, combining Theorem E and Theorem 1, we arrive at the following result: 

Corollary 1: Let 



n

j

j

j zazP
0

)(  be a polynomial of degree n such that for some 11 k , 12 k , 

10 1  , 10 2  ,either 11321 ...... aaaak nn    and 022312 ...... aaaak nn   ,if 

n is odd , or 01221 ...... aaaak nn    and  123312 ...... aaaak nn   , if n is even. Then 

for odd n, P(z) has all its zeros in  
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and for even n, P(z) has all its zeros in  
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Theorem 2: Let 



n

j

j

j zazP
0

)(  be a polynomial of degree n with jja )Re(  and jja )Im( , 

j=0,1,2,……,n, such that   

                                   011 ......   nnk .                                    

Then P(z) does not vanish in  
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Remark 2: If in Theorem 2, we have, in addition, 

                   011 ......   nn ,  

then  0

1

 


 n

n

j

jj , and we have the following result: 

Theorem 3: Let 



n

j
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j zazP
0

)(  be a polynomial of degree n with jja )Re(  and jja )Im( , 

j=0,1,2,……,n, such that   

                                   011 ......   nnk , 

                                   011 ......   nn . 

Then P(z) does not vanish in  
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Remark 3: Taking 1 , Theorem 3 reduces to Theorem C. 

   Combining Theorem 2 and Theorem F, we get the following result: 

Corollary 2: : Let 
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)(  be a polynomial of degree n with jja )Re(  and jja )Im( , 

j=0,1,2,……,n, such that   

                                   011 ......   nnk .                                    

Then P(z) has all its zeros in 

 







1

1

0000

0

2)()(
n

j

jnnnn ka

a



 

z  

])1(2)(2[
1

1

1

0

000 





  n

n

j

jnn

n

akk
a

  

Theorem 4: Let 
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)(  be a polynomial of degree n such that for some  , 
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 ja , j=0,1,……,n, 

and for some 1k , 10   

                  011 ...... aaaak nn   . 

Then P(z) does not vanish in  
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Remark 4: Taking 1 , Theorem 4 reduces to Theorem D. 

   Combining Theorem 4 and Theorem G, we get the following result: 
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Corollary 3 : Let 
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)(  be a polynomial of degree n such that for some  , 

                    
2

arg


 ja , j=0,1,……,n, 

and for some 1k , 10   
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. 

 Then P(z) has all its zeros in 
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II. LEMMA 
For the proofs of the above results, we need the following lemma: 

Lemma: For any two complex numbers 0b  and 1b  such that 
10 bb   and 

1,0,
2

arg  jb j


  for some real  ,  

                  sin)(cos)( 101010 bbbbbb  . 

The above lemma is due to Govil and Rahman [2]. 

 

III. PROOFS OF THE THEOREMS 
Proof of Theorem 1: Let n be odd. Consider the polynomial 
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Since q(z) is analytic for 1z  and q(0)=0, it follows , by Rouche’s theorem, that  

        zMzq 1)(   for 1z . 

Hence, it follows that, for 1z , 

   )()( 0 zqazF   

            
zMa
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if 
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a
z  . 

It is easy to see that 
01 aM   and the proof is complete if n is odd. 

The proof for even n is similar. 

Proof of Theorem 2: Consider the polynomial 
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Since q(z) is analytic for 1z  and q(0)=0, it follows , by Rouche’s theorem, that  

        zMzq 2)(   for 1z . 

Hence, it follows that, for 1z , 
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It is easy to see that 
02 aM   and the proof is complete 

Proof of Theorem 4: Consider the polynomial 
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Since q(z) is analytic for 1z  and q(0)=0, it follows , by Rouche’s theorem, that  

        zMzq 3)(   for 1z . 

Hence, it follows that, for 1z , 
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It is easy to see that 
03 aM   and the proof is complete 

 

REFERENCES 
[1]. Y. Choo and G. K. Choi, On the Zero-free Regions of Polynomials, Int.Journal of Math. Analysis, 

Vol.5,2011,no. 20, 975-981. 

[2]. N. K. Govil and Q. I. Rahman, On the Enestrom-Kakeya Theorem,Tohoku Math.J. 20(1968), 126-136. 

[3]. M. H. Gulzar, Distribution of the Zeros of a Polynomial, Int. Journal Of Innovative  Research and 

Development, Vol.2 Issue 3, March 2013,416-427. 

[4]. M. H. Gulzar Some Refinements of Enestrom-Kakeya Theorem, , Int.Journal of Mathematical Archive 

-2(9), September 2011, 1512-1519. 

[5]. M. Marden, Geometry of Polynomials, Math. Surveys No. 3, Amer.Math. Soc. (RI Providence) , 1966. 

  

 

 


