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Abstract:- The stability analysis around equilibrium of a discrete-time predator prey system is considered 

in this paper. We obtain local stability conditions of the system near equilibrium points. The phase 

portraits are obtained for different sets of parameter values. Also limit cycles and bifurcation diagrams 

are provided for selective range of growth parameter. It is observed that prey and predator populations 

exhibit chaotic dynamics. Numerical simulations are performed and they exhibit rich dynamics of the 

discrete model. 2010 Mathematics Subject Classification. 39A30, 92D25 
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I. INTRODUCTION 
Dynamics of interacting biological species has been studied in the past decades. The first models were put 

forward independently by Alfred Lotka (an American biophysicist, 1925) and Vito Volterra (an Italian 

Mathematician, 1926). Volterra formulated the model to explain oscillations in fish populations in Mediterranean. 

The model is based on the following assumptions: 

(a) Prey population grow in an unlimited way when predator is absent 

(b) Predators depend on the presence of prey to survive 

(c) The rate of predation depends up on the likelihood that a predator encounters a prey 

(d) The growth rate of the predator population is proportional to rate of predation. 

The Lotka-Volterra model is the simplest model of predator-prey interactions, expressed by the following equations 

[2, 4]. 

𝑥 ′ = 𝑎𝑥 − 𝑏𝑥𝑦 

𝑦′ = −𝑐𝑦 + 𝑑𝑥𝑦 

where x, yare the prey and predator population densities and a, b, c,d are positive constants. 

 

II. MODEL DESCRIPTION AND EQUILIBRIUM POINTS 
The discrete time models described by difference equations are more appropriate when the populations 

have non overlapping generations. Discrete models can also provide efficient computational models of continuous 

models for numerical simulations. The maps defined by simple difference equations can lead to rich complicated 

dynamics [1,3,5,7]. The paper [1] discusses the local stability of fixed points, bifurcation, chaotic behavior, 

Lyapunov exponents and fractal dimensions of the strange attractor associated with (1). This paper considers the 

following system of deference equations which describes interactions between two species and presents the various 

nature of fixed points and numerical simulations showing certain dynamical behavior. 
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III. EIGEN VALUES AND STABILITY 
Nonlinear systems are much harder to analyze than linear systems since they rarely possess analytical 

solutions. One of the most useful and important technique for analyzing nonlinear systems qualitatively is the 

analysis of the behavior of the solutions near equilibrium points using linearization. The local stability analysis of 

the model can be carried out by computing the Jacobian corresponding to each equilibrium point. The Jacobian 

matrix J for the system (1) is 

 
The Jacobian at E0 is of the form 
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The eigen values are 
1 r  and 

2 c  . Stability is ensured if 
1,2 1  which implies r < 1 and c < 1.The 

Jacobian matrix for E1 is 
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Computation yields 
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IV. CLASSIFICATION OF EQUILIBRIUM POINTS 
The following lemma [8] is useful in the study of the nature of fixed points. 

Lemma1.Let 
2( )p B C     andλ1, λ2 be the roots of ( ) 0p   . Suppose that (1) 0p  Then we have  

(i) 1 1  and 2 1   if and only if ( 1) 0p    and C<1. 

(ii) 1 1  and 2 1   (or 1 1   and 2 1  ) if and only if ( 1) 0p   . 

(iii) 1 1  and 2 1   if and only if ( 1) 0p   and C>1. 

(iv) 1 1  and  2 1  if and only if ( 1) 0p   and 0,2B . 

(v) 1 and 2 are complex and 1 2   if and only if B
2
-4C < 0 and C=1. 

The characteristic roots 1  and 2  of ( ) 0p    are called eigen values of the fixed point  ,x y 
. The fixed point 
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 is a sink if 1,2 1  . Hence the sink is locally asymptotically stable. The fixed point  ,x y 

 is a source if 

1,2 1  . The source is locally unstable. The fixed point  ,x y 
 is a saddle if 1 1   and 2 1   (or 1 1  and
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 is called non hyperbolic if either 1 21 1or   . For the system (1), we have the 

following results. 
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Proposition 2. The fixed point E0 is a 

 Sink if 1r and 1c .   Source if 1r  and 1c . 

 Saddle if 1r  and 1c .   Non hyperbolic if 1r  and 1c . 

Proposition 3. The fixed point E1 is a 

 Sink if 1 3r  and
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Proposition 4. The fixed point E2 is a 
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V. NUMERICAL SIMULATIONS 
In this section, we provide the numerical simulations to illustrate some results of the previous sections. 

Mainly, we present the time plots of the solutions x and y with phase plane diagrams (around the positive 

equilibrium point) for the predator-prey systems. Dynamic natures of the system (1) about the equilibrium points 

with different sets of parameter values are presented. Existence of limit cycles for selective set of parameters is 

established through phase planes in Figures-3, 4. Also the bifurcation diagram, Figure-5, indicates the existence of 

chaos in both prey and predator populations. 

Example1.For the values r = 2.89, a = 0.099, b = 3.075, c = 1.09, we obtain E1=(0.65, 0) which is an axial fixed 

point. Eigen values are
1 = -0.89 and 

2 = 0.9209  so that  
1,2 1  . Hence the fixed point is stable. The time plot 

and the phase diagramillustrate the result, see Figure - 1. 

 
Figure 1. Stability at E1 

 

Example 2. In this example, we take r = 2.41, a = 1.19, b = 3.91 and c = 0.45. Computations yield E2 = (0.37, 

0.43). The eigen values are 1,2 = 0.5531 ± i0.7409 and 1,2 = 0.9246 < 1. Hence the criteria for stability are 

satisfied [6]. The phase portrait in Figure - 2 shows a sink and the trajectory spirals towards the fixed point E2. 

 
Figure 1. Stability at E2 
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Example 3. The parameters are r = 2.41, a = 1.43, b = 3.91, c = 0.25. The initial conditions on the populations of 

the species are x(0) = 0.2 and y(0) = 0.3. The trajectory spirals inwards but does not approach a point. The 

trajectory finally settles down as a limit cycle, see Figure-3.  

 
Figure 3. Limit Cycle-1 

 

 The model (1) with parameters r = 2.31, a = 1.43, b = 3.91, c = 0.15 and initial conditions x(0) = 0.3, 

y(0) = 0.4 exhibits another form of limit cycle. In this case the trajectory moves out in growing spirals and finally 

approaches the limit cycle. The existence of limit cycles for selective range of parameters shows the oscillating 

nature of the populations, see Figure-4. 

 
VI. Figure 4. Limit Cycle – 2 

 

Studies in population dynamics focuses on identifying qualitative changes in the long-term dynamics 

predicted by the model. Bifurcation theory deals with classifying, ordering and studying the regularity in the 

dynamical changes. Bifurcation diagrams provide information about abrupt changes in the dynamics and the values 

of parameters at which such changes occur. Also they provide information about the dependence of the dynamics on 

a certain parameter. Qualitative changes are tied with bifurcation. 

 
Figure 5. Bifurcation Diagram 

 

Example 4. The parameters are assigned the values a = 1.43, b = 3.91, c = 0.25 and the bifurcation diagram is 

plotted for the growth parameter in the range 2 - 3.9. Both prey and predator population undergoes chaos,Figure-5. 

 

This paper, dealt with a 2-dimensional discrete predator - prey system. Fixed points are found and stability 

conditions are obtained. The results are illustrated with suitable hypothetical sets of parameter values. Numerical 
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simulations are presented to show the dynamical behavior of the system (1). Finally, bifurcation diagrams for both 

species are presented. 

 

REFERENCES 
[1]. Abd-Elalim A. Elsadany, H. A. EL-Metwally, E. M. Elabbasy, H. N. Agiza, Chaos and bifurcation of a 

nonlinear discrete prey-predator system, Computational Ecology and Software, 2012, 2(3):169-180.            

[2]. Leah Edelstein-Keshet, Mathematical Models in Biology, SIAM, Random House, New York, 2005. 

[3]. Marius Danca, Steliana Codreanu and Botond Bako, Detailed Analysis of a Nonlinear Prey-predator 

Model, Journal of Biological Physics 23: 11-20, 1997. 

[4]. J.D.Murray, Mathematical Biology I: An Introduction, 3-e, Springer International Edition, 2004. 

[5]. Robert M.May, Simple Mathematical Models with very complicated dynamics,Nature, 261, 459 – 

67(1976). 

[6]. Saber Elaydi, An Introduction to Difference Equations, Third Edition, Springer International Edition,    

First Indian Reprint, 2008. 

[7]. L.M.Saha, Niteesh Sahni, Til Prasad Sarma, Measuring Chaos in Some Discrete Nonlinear Systems, IJEIT, 

Vol. 2, Issue 5, Nov- 2012. 

[8]. Sophia R.J.Jang, Jui-Ling Yu, Models of plant quality and larch bud moth interaction, Nonlinear Analysis, 

doi:10.1016/j.na.2009.02.091. 

[9]. Xiaoli Liu, Dongmei Xiao, Complex dynamic behaviors of a discrete-time predator prey system, Chaos, 

Solutions and Fractals 32  (2007)  8094. 


