# Performance Analysis of Data Encryption Standard Algorithm & Proposed Data Encryption Standard Algorithm

Shah Kruti Rakeshkumar.<sup>1</sup>

<sup>1</sup>Babariya Institute of Technology, Assistant Professor

**Abstract:-** The principal goal guiding the design of any encryption algorithm must be security against unauthorized attacks. Within the last decade, there has been a vast increase in the accumulation and communication of digital computer data in both the private and public sectors. Much of this information has a significant value, either directly or indirectly, which requires protection. The algorithms uniquely define the mathematical steps required to transform data into a cryptographic cipher and also to transform the cipher back to the original form. Performance and security level is the main characteristics that differentiate one encryption algorithm from another. Here introduces a new method to enhance the performance of the Data Encryption Standard (DES) algorithm is introduced here. This is done by replacing the predefined XOR operation applied during the 16 round of the standard algorithm by a new operation depends on using two keys, each key consists of a combination of 4 states (0, 1, 2, 3) instead of the ordinary 2 state key (0, 1). This replacement adds a new level of protection strength and more robustness against breaking methods.

Keywords:- DES, Encryption, Decryption, SAC

# I. INTRODUCTION

Cryptography is usually referred to as "the study of secret", while now a days is most attached to the definition of encryption. Encryption is the process of converting plain text "unhidded" to a cryptic text "hidded" to secure it against data thieves. This process has another part where cryptic text needs to be decrypted on the other end to be understood in figure 1.

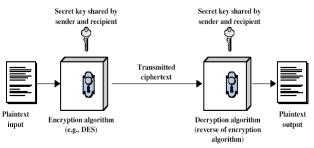



Fig. 1: Encryption/Decryption

Cryptography Goals :[2]

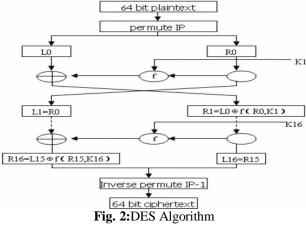
1. CONFIDENTIALLY : Information in computer transmitted information is accessible only for reading by authorized parties.

2. AUTHENTICATION- Origin of message is correctly identified with an assurance that identity is not false.

3. INTERGRITY- Only authorized parties are able to modify transmitted or stored information.

4. NON REPUDIATION- Requires that neither the sender, nor the receiver of message be able to deny the transmission.

5. ACCESS CONTROL- Requires access may be controlled by or for the target system.


6. AVAILIBILITY- Computer system assets are available to authorized parties when needed.

# II. DATA ENCRYPTION STANDARD

Without doubt the first and the most significant modern symmetric encryption algorithm is that contained in the Data Encryption Standard (DES). The DES was published by the United States' National Bureau of Standards in January 1977 as an algorithm to be used for unclassified data (information not concerned with national security). The Data Encryption Standard (DES), as specified in FIPS Publication 46-3, is a block cipher operating on 64-bit data blocks. The encryption transformation depends on a 56-bit secret key and consists of

sixteen Feistel iterations surrounded by two permutation layers: an initial bit permutation IP at the input, and its inverse  $IP^{-1}$  at the output. The structure of the cipher is depicted in Figure 2. The decryption process is the same as the encryption, except for the order of the round keys used in the Feistel iterations.[12]

The 16-round Feistel network, which constitutes the cryptographic core of DES, splits the 64- bit data blocks into two 32-bit words, LBlock and RBlock (denoted by L0 and R0). In each iteration (or round), the second word Ri is fed to a function f and the result is added to the first word Li. Then both words are swapped and the algorithm proceeds to the next iteration. The function f of DES algorithm is key dependent and consists of 4 stages.



**1. Expansion** (*E*): The 32-bit input word is first expanded to 48 bits by duplicating and reordering half of the bits.[11]

**2. Key mixing :**The expanded word is XORed with a round key constructed by selecting 48 bits from the 56-bit secret key, a different selection is used in each round.

**3.** Substitution. The 48-bit result is split into eight 6-bit words which are substituted in eight parallel 6×4-bit S-boxes. All eight S-boxes, are different but have the same special structure.

**4. Permutation** (**P**) **:** The resulting 32 bits are reordered according to a fixed permutation before being sent to the output.

The modified RBlock is then XORED with LBlock and the resultant fed to the next RBlock register. The unmodified RBlock is fed to the next LBlock register. With another 56 bit derivative of the 64 bit key, the same process is repeated.

#### **III. IMPROVED 4-STATES OPERATION**

To increase the security and key space, that makes the encryption algorithms more robustness to the intruders, a new manipulation bits process has been added in by using different truth table for manipulation bits process work on 4- states (0,1,2,3), while the traditional binary process (XOR) work on (0, 1) bits only. The symbol # has been used to refer to the operator that execute this process use truth tables that shown in figure 3.[7]

The new operation needs 3 inputs, the first one specify the table number that should be used to calculate the result among the 4 tables, the other 2 inputs define the row and column number in the specified table where the cross point of them gives the result.

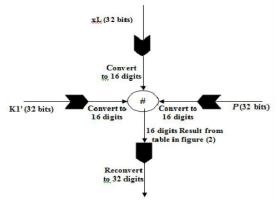



Fig. 3:Design of Modified DES Algorithm

Here, example for # operation, this operation need 3 inputs, first one specify the table number that should be used to calculate the result among the four truth tables as shown in Table 1, the other 2 inputs define the row and column number in the specified table where the cross point of them gives the result this result is in 16 digits.

Input in 32 bit binary format 1001011101010010101010101001001 which is converted into the number 2 1 1 3 1 1 0 2 2 2 1 3 2 2 0 2 1

Input 1: 0 1 3 0 1 2 2 3 1 Input 2: 3 2 2 1 0 1 2 1 1 Input 3: 1 0 0 2 1 3 2 1 2 Result : 3 0 2 3 1 2 2 2 2

| #0 | 0 | 1 | 2 | 3 | #1 | 0 | 1 | 2 | 3 |
|----|---|---|---|---|----|---|---|---|---|
| 0  | 3 | 2 | 1 | 0 | 0  | 0 | 1 | 2 | 3 |
| 1  | 2 | 3 | 0 | 1 | 1  | 1 | 0 | 3 | 2 |
| 2  | 1 | 0 | 3 | 2 | 2  | 2 | 3 | 0 | 1 |
| 3  | 0 | 1 | 2 | 3 | 3  | 3 | 2 | 1 | 0 |

| #2 | 0 | 1 | 2 | 3 | #3 | 0 | 1 | 2 | 3 |
|----|---|---|---|---|----|---|---|---|---|
| 0  | 2 | 3 | 0 | 1 | 0  | 1 | 0 | 3 | 2 |
| 1  | 3 | 2 | 1 | 0 | 1  | 0 | 1 | 2 | 3 |
| 2  | 0 | 1 | 2 | 3 | 2  | 3 | 2 | 1 | 0 |
| 3  | 1 | 0 | 3 | 2 | 3  | 2 | 3 | 0 | 1 |

Table: Truth Table

#### IV. PROPOSED ALGORITHM OF DES

This research proposed a new improvement to the DES algorithm. The proposed improvement makes use of the new operation defined in the previous section, operation (#) applied during each round in the original DES algorithm, where another key is needed to apply this operation, this key may come in binary form and convert to a 4-states key. Here, originally DES algorithm linear cryptanalysis and differential cryptanalysis attacks are heavily depends on the S-box design.

Consequently, multiple keys will be used in each round of the original DES, the first key Ki will be used with the f function. The second key will be the first input to the # operation, the second input will be the output of the f function, and the third input to the # operation will be the value Li, Algorithm shows the three 32-bits input to the # operation and the 32-bits output, with places needed to convert these 32- bits to 16-digits. These three inputs to the # operation should be firstly converted from 32 bits to a 16 digits each may be one of four states (0,1,2, 3), i.e., each two bits converted to its equivalent decimal digits. Algorithm of modified data encryption standard with 4 state operation :

**INPUT:-** plaintext m1 . . . m64; 64-bit two keys K=k1 . . . k64 and K'=k1' . . . k64' (includes 8 parity bits).

**OUTPUT:-** 64-bit ciphertext block C=c1 ....c64.

1. (key schedule) Compute sixteen 48-bit round keys Ki, from K.

2. (key schedule) compute sixteen 32-bit round keys Ki', from K'

2. (L0, R0) \_IP(m1, m2,...m64) (Use IP Table to permute bits; split the result into left and

right32-bit halves L0=m58m50 . . . m8,R0=m57m49 . . . m7)

3. (16 rounds) for i from 1 to 16, compute Li and Ri as follows:

3.1. Li=Ri-1

3.2. Ri = Li-1 #f (R i-1, Ki) where f(Ri-1, Ki) = P(S(E(Ri-1) Å Ki)), computed as follows:

(a) Expand  $Ri-1 = r1r2 \dots r32$  from 32 to 48 bitsT\_E(Ri-1). (Thus T= r32r1r2 \dots r32r1.)

(b) T'\_T XOR Ki . Represent T ' as eight 6-bit character strings: T ' =  $(B1 \dots B8)$  (c)T " F

Function  $F = ((((((S1+S2) mod 2^32) XOR S3) + S4) mod 2^32) XOR S5) + S6)mod 2^32$ 

Here Si(Bi) maps to the 8 bit entry inrow r and column c of Si

(d)T"' P(T"). (Use P per table to permute the 32 bits of T"=t1t2...t32,

yielding t16t7 . . . t25.)

and the operation # in Ri = Li - 1 # f(Ri - 1, Ki) is computed as follows:

- (a) convert the 32 bits resulted from f (R i-1, Ki) into 4-states 16 digits call it f'
- (b) convert the 32 bits of Li-1 to 4-states 16 digits call it Li-1'
- (c) convert the 32 bits of Ki' to 4-states 16 digits call it Ki"

(d) compute Ri by applying the # operation on f', Li-1', and Ki'' according to truth tables shown in figure

- 4. b1b2 . . . b64 \_ (R16, L16). (Exchange final blocks L16, R16.)
- 5. C \_ IP-1 (b1b2 . . . b64). (Transpose using IP-1 C = b40b8 . . . b25.)

6. End.

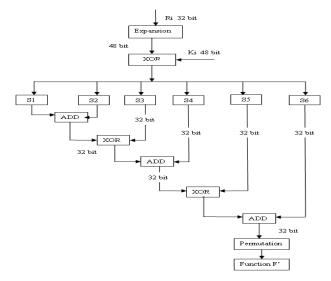



Fig. 4:Function F Design

### V. TEST RESULTS.

In order to study the performance, the algorithm has been tested on an Intel based machine running Microsoft Windows 7 with a 2.50 GHz Intel Core 2 i5 processor and 4 GB of main memory. The algorithm is developed on JAVA with Net Beans 6.9 software. The proposed algorithm has been extensively tested for avalanche effect and SAC. Both the criterion tested on proposed algorithm and is compared with original algorithm. The following subsections show the experimental results.

Test Results of Avalanche Effects

| SR  | Original   | Modified   | DES     | Proposed  |
|-----|------------|------------|---------|-----------|
| NO. | Secret Key | Secret Key | Algorit | DES       |
|     |            |            | hm      | Algorithm |
| 1   | 05771BBAA  | 15771BBAAF |         |           |
|     | FCDE9F3    | CDE9F3     | 480     | 487       |
| 2   | 56AD1230E  | 46AD1230EF |         |           |
|     | FAD1790    | AD1790     | 470     | 483       |
| 3   | 109ADE987  | 109ADC9872 |         |           |
|     | 211ADFB    | 11ADFB     | 490     | 498       |
| 4   | 23ACB259A  | 03ACB259A  |         |           |
|     | BD56890    | BD56890    | 485     | 500       |
| 5   | 09ADFB553  | 29ADFB5533 |         |           |
|     | 3129FFD    | 129FFD     | 461     | 490       |
| 6   | AADDFF33   | AADDFF332  |         |           |
|     | 221290AB   | 21290A3    | 446     | 498       |
| 7   | BADF09135  | 2ADF091357 |         |           |
|     | 789225A    | 89225A     | 447     | 467       |
| 8   | AB1298DA   | 8B1298DA39 |         |           |
|     | 3968235A   | 68235A     | 463     | 472       |
| 9   | 1159023AD  | 5159023ADE | 486     | 497       |

| Performance Analys | s Of Data Encryption | Standard Algorithm & | Proposed Data |
|--------------------|----------------------|----------------------|---------------|
|                    |                      |                      | - F           |

|    | EAF2215D   | AF2215D     |        |        |
|----|------------|-------------|--------|--------|
| 10 | 23AD5A9D   | 03AD5A9D3   |        |        |
|    | 3B68F0D12  | B68F0D12    | 470    | 492    |
| 11 | 198012876A | 398012876A  |        |        |
|    | DFBDEAB    | DFBDEAB     | 450    | 475    |
| 12 | 01929687A  | 03929687AB  |        |        |
|    | BADB1098   | ADB1098     | 462    | 492    |
| 13 | 0578AABC   | 4578AABCD   |        |        |
|    | DFF4311E   | FF4311E     | 482    | 499    |
| 14 | FF0795AB1  | FF0795AB1C  |        |        |
|    | CD54296    | D54292      | 462    | 483    |
| 15 | 0379ACEFF  | 0379ACEFFB  |        |        |
|    | BB0D152    | B0D142      | 475    | 524    |
| 16 | 5912ADE98  | 5912ADEB87  |        |        |
|    | 70ABF98    | 0ABF98      | 470    | 503    |
| 17 | ABD198254  | ABD1982540  |        |        |
|    | 0FEAD01    | FEAF01      | 439    | 468    |
| 18 | 24680ADF1  | 04680ADF13  |        |        |
|    | 3579ADE    | 579ADE      | 456    | 477    |
| 19 | A13DE0981  | 213DE098135 |        |        |
|    | 358319A    | 8319A       | 445    | 509    |
| 20 | DFCA19093  | 5FCA190935  |        |        |
|    | 5ADF013    | ADF013      | 480    | 522    |
| 21 | 01ADF2987  | 01ADF298F6  |        |        |
|    | 65ABCDE    | 5ABCDE      | 456    | 504    |
|    | Average    |             | 467.92 | 492.04 |

 Table 1 :One bit change in key

| SR | Original | Modified   | DES     | Proposed  |
|----|----------|------------|---------|-----------|
| NO | Secret   | Secret Key | Algorit | DES       |
| •  | Key      |            | hm      | Algorithm |
| 1  | 13345779 | 133457799  |         |           |
|    | 9BBCDFF  | BBCDFF2    | 484     | 493       |
|    | 1        |            |         |           |
| 2  | 11345766 | 2134576689 |         |           |
|    | 89ACCBE  | ACCBEE     | 446     | 495       |
|    | E        |            |         |           |
| 3  | 1453699A | 1453699AA  |         |           |
|    | AFF00DC  | FF00DC7    | 479     | 485       |
|    | 2        |            |         |           |
| 4  | 7564133A | F564133AE  |         |           |
|    | EFF0BCD  | FF0BCD3    | 458     | 469       |
|    | 1        |            |         |           |
| 5  | 05771BB  | 25771BBA   |         |           |
|    | AAFCDE   | AFCDE9F1   | 459     | 469       |
|    | 9F3      |            |         |           |
| 6  | 56AD123  | 77AD1230E  |         |           |
|    | 0EFAD17  | FAD1790    | 485     | 499       |
|    | 90       |            |         |           |
| 7  | 109ADE9  | 909ADC987  |         |           |
|    | 87211AD  | 211ADFB    | 479     | 492       |
|    | FB       |            |         |           |
| 8  | 23ACB25  | 73ACB259   |         |           |
|    | 9ABD568  | ABD56890   | 465     | 489       |
|    | 90       |            |         |           |
| 9  | 09ADFB5  | 69ADFB55   | 450     | 175       |
|    | 533129FF | 33129FFD   | 450     | 475       |

|    | D                         |                           |        |        |
|----|---------------------------|---------------------------|--------|--------|
| 10 | AADDFF<br>33221290<br>AB  | ABDDFF33<br>221290A3      | 446    | 498    |
| 11 | BADF091<br>35789225<br>A  | BADF0919<br>5789225A      | 459    | 472    |
| 12 | AB1298D<br>A3968235<br>A  | 9B1298DA3<br>968235A      | 467    | 505    |
| 13 | 1159023A<br>DEAF221<br>5D | 115902FAD<br>EAF2215D     | 492    | 506    |
| 14 | 23AD5A9<br>D3B68F0<br>D12 | 23AD5C9D<br>3B68F0D12     | 485    | 490    |
| 15 | 19801287<br>6ADFBD<br>EAB | 198012876<br>ADF8DEA<br>B | 454    | 489    |
| 16 | 01929687<br>ABADB1<br>098 | 01929687F<br>BADB1098     | 460    | 482    |
| 17 | 0578AAB<br>CDFF431<br>1E  | 0578AA94<br>DFF4311E      | 458    | 490    |
| 18 | FF0795A<br>B1CD542<br>96  | FF0795AB0<br>4D54296      | 474    | 499    |
| 19 | 0379ACE<br>FFBB0D1<br>52  | 0379ACEFF<br>3B0D142      | 488    | 499    |
| 20 | 5912ADE<br>9870ABF<br>98  | 5912ADEB<br>870ABF90      | 468    | 497    |
| 21 | ABD1982<br>540FEAD<br>01  | 2BD198254<br>0FEAF03      | 478    | 511    |
|    | Average                   | <b>?</b> •Two bit cha     | 468.56 | 492.52 |

 Table 2 : Two bit change in key

| SR<br>NO | Original<br>Secret<br>Key | Modified<br>Secret Key | DES<br>Algo<br>rith<br>m | Propose<br>d DES<br>Algorith<br>m |
|----------|---------------------------|------------------------|--------------------------|-----------------------------------|
| 1        | 13345779<br>9BBCDFF<br>1  | 033457799<br>BBCDFF2   | 483                      | 521                               |
| 2        | 11345766<br>89ACCBE<br>E  | 0134576689<br>ACCBE8   | 482                      | 492                               |
| 3        | 1453699A<br>AFF00DC<br>2  | D453699A<br>AFF00DC3   | 481                      | 490                               |
| 4        | 7564133A<br>EFF0BCD<br>1  | 6764133AE<br>FF0BCD3   | 455                      | 482                               |
| 5        | 05771BB<br>AAFCDE         | 20771BBA<br>AFCDE9F3   | 486                      | 492                               |

|    | 9F3            |                 | 1   |     |
|----|----------------|-----------------|-----|-----|
| 6  | 56AD123        | 56881230E       | 481 | 502 |
| 0  | 0EFAD17        | FAD1790         | 401 | 502 |
|    | 90             | 11101170        |     |     |
| 7  | 109ADE9        | 609ADE987       | 487 | 500 |
| ,  | 87211AD        | 211ADFB         | +07 | 500 |
|    | FB             | 21111010        |     |     |
| 8  | 23ACB25        | 03ACB259        | 488 | 497 |
| 0  | 9ABD568        | A8D56890        | 100 | 127 |
|    | 90             | 110200000       |     |     |
| 9  | 09ADFB5        | 29ADFA55        | 480 | 490 |
| -  | 533129FF       | 3B129FFD        |     |     |
|    | D              |                 |     |     |
| 10 | AADDFF         | AADDF833        | 472 | 498 |
|    | 33221290       | 221290A3        |     |     |
|    | AB             |                 |     |     |
| 11 | BADF091        | BADF09F3        | 487 | 498 |
|    | 35789225       | 5789225A        |     |     |
|    | А              |                 |     |     |
| 12 | AB1298D        | AB1248DA        | 481 | 506 |
|    | A3968235       | 3968235A        |     |     |
|    | А              |                 |     |     |
| 13 | 1159023A       | 11590D3A        | 464 | 481 |
|    | DEAF221        | DEAF2215        |     |     |
| L  | 5D             | D               |     |     |
| 14 | 23AD5A9        | 23AD5A9D        | 479 | 496 |
|    | D3B68F0        | 3FE9F0D12       |     |     |
|    | D12            | <b>D0001007</b> | 40- |     |
| 15 | 19801287       | F98012876       | 485 | 500 |
|    | 6ADFBD         | ADFBDEA         |     |     |
| 16 | EAB            | B               | 460 | 507 |
| 16 | 01929687       | 01929687A       | 460 | 507 |
|    | ABADB1         | B2F31098        |     |     |
| 17 | 098<br>0578AAB | 0570FABC        | 466 | 500 |
| 1/ | CDFF431        | DFF4311E        | 400 | 500 |
|    | 1E             | DIT4311E        |     |     |
| 18 | FF0795A        | FF0795AB1       | 469 | 489 |
| 10 | B1CD542        | C414296         |     | 107 |
|    | 96             | CT17270         |     |     |
| 19 | 0379ACE        | 0379ACE7E       | 477 | 487 |
| 17 | FFBB0D1        | AB0D152         |     | 107 |
|    | 52             | 11202102        |     |     |
| 20 | 5912ADE        | 1912ADED        | 466 | 488 |
|    | 9870ABF        | 870ABF9C        |     | -   |
|    | 98             |                 |     |     |
| 21 | ABD1982        | ABD19825        | 476 | 500 |
|    | 540FEAD        | C8BEAD01        |     |     |
|    | 01             |                 |     |     |
| 22 | 24680AD        | 24680AD79       | 486 | 501 |
|    | F13579A        | 2579ADE         |     |     |
|    | DE             |                 |     |     |
| 23 | A13DE09        | A13DE09F1       | 474 | 503 |
|    | 81358319       | 358319A         |     |     |
|    | А              |                 |     |     |
| 24 | DFCA190        | DFCA1909        | 469 | 500 |
|    | 935ADF0        | 35ADF152        |     |     |
|    | 13             |                 |     |     |
|    |                |                 |     |     |

| 25 | 01ADF29<br>8765ABC<br>DE | 01A9F2987<br>64AB4DE | 490        | 504    |
|----|--------------------------|----------------------|------------|--------|
|    | Average                  |                      | 476.9<br>6 | 496.96 |
|    | <b>T 11 3</b>            | Thurse 1.14 - 1      | • 1        |        |

**Table 3 :**Three bit change in key

Now another criterion for testing on proposed DES algorithm is SAC which states that any output bit j of an S-box should change with probability  $\frac{1}{2}$  when any single input bit i is inverted for all i, j. The SAC is one of the design criterions for function f. Such S-Boxes exhibit which is generally referred to as Good Avalanche Effect, where inverting any input bit i causes approximately half of the output bits to be inverted, this is equivalent to good Diffusion.

Here, In SAC when we given 48 bits input to the function F and perform all operation in function F after that we got 32 bits output. In those 32 bits output data numbers of bits are change when we change 1 or more bits change in input data.

Now, we saw when we change one bit in input data at that time number of bits are change. The following Table shows the SAC results when change one bit in input data.

| SR No      | DES    | Proposed<br>DES | DES<br>Results(%<br>) | Proposed<br>DES<br>Results (%) |
|------------|--------|-----------------|-----------------------|--------------------------------|
| 1          | 2      | 17              | 6.25                  | 53.125                         |
| 2          | 2      | 16              | 6.25                  | 50                             |
| 3          | 2      | 20              | 6.25                  | 62.5                           |
| 4          | 3      | 15              | 9.375                 | 46.875                         |
| 5          | 4      | 17              | 12.5                  | 53.125                         |
| 6          | 2      | 17              | 6.25                  | 53.125                         |
| 7          | 3      | 20              | 9.375                 | 62.5                           |
| 8          | 2      | 16              | 6.25                  | 50                             |
| 9          | 2      | 16              | 6.25                  | 50                             |
| 10         | 2      | 16              | 6.25                  | 50                             |
| 11         | 3      | 18              | 9.375                 | 56.25                          |
| 12         | 2      | 18              | 6.25                  | 56.25                          |
| 13         | 4      | 17              | 12.5                  | 53.125                         |
| 14         | 2      | 16              | 6.25                  | 50                             |
| 15         | 3      | 16              | 9.375                 | 50                             |
| 16         | 2      | 18              | 6.25                  | 56.25                          |
| 17         | 2      | 17              | 6.25                  | 53.125                         |
| 18         | 2      | 17              | 6.25                  | 53.125                         |
| Average    | 2.444  | 17.055          | 7.639                 | 53.298                         |
| Difference | 14.611 |                 | 45.659                |                                |

Table 4 : SAC 1 bit change in input data to function F

| SR No | DES | Proposed<br>DES | DES<br>Results(%) | Proposed<br>DES<br>Results(%) |
|-------|-----|-----------------|-------------------|-------------------------------|
| 1     | 2   | 19              | 6.25              | 59.375                        |
| 2     | 2   | 20              | 6.25              | 62.5                          |
| 3     | 5   | 23              | 15.625            | 71.875                        |
| 4     | 2   | 18              | 6.25              | 56.25                         |
| 5     | 1   | 15              | 3.125             | 46.875                        |
| 6     | 3   | 21              | 9.375             | 65.625                        |

| 7          | 2      | 19 | 6.25   | 59.375 |
|------------|--------|----|--------|--------|
| 8          | 2      | 17 | 6.25   | 53.125 |
| 9          | 2      | 15 | 6.25   | 46.875 |
| 10         | 2      | 17 | 6.25   | 53.125 |
| 11         | 5      | 18 | 15.625 | 56.25  |
| 12         | 2      | 17 | 6.25   | 53.125 |
| 13         | 1      | 18 | 3.125  | 56.25  |
| 14         | 1      | 15 | 3.125  | 46.875 |
| 15         | 3      | 19 | 9.375  | 59.375 |
| 16         | 1      | 20 | 3.125  | 62.5   |
| 17         | 2      | 18 | 6.25   | 56.25  |
| 18         | 2      | 15 | 6.25   | 46.875 |
| Average    | 2.222  | 18 | 6.94   | 56.25  |
| Difference | 15.777 |    | 49.30  |        |

Table 5 : SAC 2 bits change in input data to function F

When we change one bit in an input at that time number of output bits are change in original DES 7.638% ratio and modified DES 53.2986% ratio. So, finally difference between original DES and proposed DES is 45.69%

When we change two bits in an input at that time number of output bits are change in original DES 6.94% ratio and modified DES 56.25% ratio. So, finally difference between original DES and proposed DES is 49.305%.

#### VI. CONCLUSION

As we toward a society where automated information resources are increased and cryptography will continue to increase in importance as a security mechanism. Electronic networks for banking, shopping, inventory control, benefit and service delivery, information storage and retrieval, distributed processing, and government applications will need improved methods for access control and data security. The information security can be easily achieved by using Cryptography technique. DES is now considered to be insecure for some applications like banking system. there are also some analytical results which demonstrate theoretical weaknesses in the cipher. So it becomes very important to augment this algorithm by adding new levels of security to make it applicable. By adding additional key, modified S-Box design, modifies function implementation and replacing the old XOR by a new operation as proposed by this thesis to give more robustness to DES algorithm and make it stronger against any kind of intruding. DES Encryption with two keys instead of one key already will increase the efficiency of cryptography.

#### ACKNOWLEDGMENT

I take this opportunity to acknowledge those who have been great support and inspiration through the research work. My sincere thanks to Prof. Bhavika Gambhava for her diligence, guidance, encouragement and help throughout the period of research, which have enabled me to complete the research work in time. I express my deep sense of gratitude to Prof. C. K. Bhensdadia, Professor and Head of Computer Engineering Department of Dharmsinh Desai University, Nadiad, Gujarat for providing the necessary facilities during the research and encouragement from time to time. I also thank him for the time that he spread for me, from his extreme busy schedule. Special thanks to the institute, Dharmsinh Desai University, for giving me such a nice opportunity to work in the great environment. Thanks to my friend and colleague who have been a source of inspiration and motivation that helped to me during my dissertation period. And to all other people who directly or indirectly supported and help me to fulfill my task. Finally, I heartily appreciate my family members for their motivation, love and support in my goal.

# REFERENCES

- [1] National Bureau of Standards Data Encryption Standard, Fips Publication 46,1977.
- [2] O.P. Verma, Ritu Agarwal, Dhiraj Dafouti,Shobha Tyagi "Performance Analysis Of Data Encryption Algorithms ", 2011
- [3] Gurjeevan Singh, Ashwani Kumar Singla, K.S.Sandha "Performance Evaluation of Symmetric Cryptography Algorithms, IJECT, 2011.
- [4] Diaa Salama, Abdul Elminaam, Hatem Mohamed Abdul Kader and Mohie Mohamed Hadhound " Performance Evaluation of Symmetric Encryption Algorithm ", IJCSNS, 2008

- Dr. Mohammed M. Alani " Improved DES Security", International Multi-Conference On System, [5] Signals and Devices, 2010
- Tingyuan Nie, Teng Zhang "A Study of DES and Blowfish Encryption Algorithm", TENCON, 2009 [6]
- Afaf M. Ali Al- Neaimi, Rehab F. Hassan "New Approach for Modified Blowfish Algorithm Using 4 [7] – States Keys", The 5th International Conference On Information Technology,2011 J.Orlin Grabbe "The DES Algorithm Illustrated"
- [8]
- Dhanraj, C.Nandini, and Mohd Tajuddin " An Enhanced Approch for Secret Key Algorithm based on [9] Data Encryption Standard", International Journal of Research And Review in Computer Science, August 2011
- [10] Gurjeevan Singh, Ashwani Kumar, K.S. Sandha "A Study of New Trends in Blowfish Algorithm", International Journal of Engineering Research and Application, 2011
- W. Stallings, Cryptography and Network Security: Principles and Practices, 5th ed., Prentice Hall, [11] 1999.
- B.Scheier, Applied Cryptography : Protocols, Algorithms and Source Code in C,2nd ed.., John Wiley [12] & Sons, 19995.