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Abstract:- Sensor networks and satellite constellations face a number of challenges for reliable and robust 

communications. Increasingly heterogeneous nodes and a multitude of new emerging Earth science applications 

put additional restrictions on throughput and delay requirements. These problems are further aggravated by 

energy and bandwidth constraints on the network nodes. Quality of service and performance of such wireless 
networks, in the presence of such issues, are greatly affected by network routing and bandwidth allocation. We 

propose a new class of routing algorithms based on principles of biological swarms, which have the potential to 

address these problems in an autonomous and intelligent fashion. Such swarm-based algorithms adapt well to 

dynamic topologies, and, compared to the current state-of-the-art, have been shown to result in the highest 
throughput and lowest delays in internet-style networks.  

Swarm-based routing algorithms boast a number of attractive features, including autonomy, robustness 

and fault-tolerance. They rely on the interaction of autonomous agents who communicate with each other 
through the environment (a phenomenon known as stigmergy). Current swarm based routing algorithms focus 

on wired circuit or packet switched networks. We propose new swarm routing algorithms suitable for wireless 

sensor or satellite networks. Control for optimizing the transmitter power and data rate for network 

communication is also considered. Biologically inspired methodologies such as evolutionary computing and 
particle swarm optimization can be used for concurrent maximization of the data rate and minimization of 

transmitter power, subject to constraints on the bit error rate (BER) at the receiver. 

 

I.        INTRODUCTION 
The rapid speed of technological innovation has resulted in increasingly sophisticated means for earth 

exploration and data collection from space. Without a pre-existing network infrastructure, nodes with wireless 

communication capabilities are tasked with information collection, processing, and communication. Lack of a 

fixed network and the nature of the nodes give rise to challenges for robust and reliable data routing, which must 
now compensate for: a) dynamic network topologies b) changing environments c) limited node energies d) 

limited bandwidth and e) background noise. These issues are, for example, typical for Mobile Ad-hoc Wireless 

Networks (MANETS), and require different routing approaches than those used in current conventional 

networks. 
Swarm intelligence [1] forms the core of an enabling technology for a new class of routing and 

optimization algorithms boasting attractive features, such as autonomy, robustness and fault-tolerance – 
rendering it suitable for MANETS. Algorithms based on swarms have been developed in recent years for wired 

networks [2-12], but their properties are also attractive for ad-hoc networks. We investigate the specific 
challenges of wireless networks and propose adaptations of swarm-based algorithms to address them both for 

network routing, and network bandwidth allocation. 
 

II.       ROUTING IN WIRELESS DATA NETWORKS 
The usual performance metrics of a network are average throughput and delay. The interaction between 

routing and flow control affects how well these metrics are jointly optimized. The balance of delay and 
throughput is determined by the flow-control scheme [13] (see Fig. 1(a)). Good routing generally results in a 

more favorable delay-throughput curve (Fig. 1(b)). These curves serve as the standard metric for comparison of 

routing algorithm performance. 
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Fig. 1. a) Routing – flow control interaction, b) throughput delay curves. 

 
Routing algorithms should handle different kinds of service requests, including unicast (one-to-one) 

and  multicast (one-to-many) communication. Users may request quality of service (QoS) guarantees, which can 
involve a guaranteed allocation of bandwidth, a maximum delay, or a minimum hop-count. Such guarantees 
only make sense for virtual-circuit networks. This is because in applications that require logical connections 
there is demand for a minimum flow rate of data. This is unlike packet-switched types of service where best-
effort routing is implemented. Although logical connections use static routing, the establishment of the 
connection is prone to the same problems that affect routing in the rest of the larger network.  

In wireless networks, there are additional considerations to be taken into account. Node mobility and 

the wireless nature of communication – prone to noise and dependent on various environmental conditions – 
affect the connectivity of the network, causing its topology to change, often rather rapidly. This is aggravated by 

further constraints on energy reserves and available bandwidth – and signal degradation by noise and limited 
transceiver resources.  

Therefore, instead of a traditional layered network control approach, a joint optimization scheme 
affecting both the link and the routing layer is necessary. This idea is discussed by Wiesellthier et. al. [14], 

where the Broadcast Incremental Power (BIP) algorithm for multicasting in ad-hoc networks is proposed. 
Although BIP is an improvement compared to previous techniques, it is still sub-optimal. Furthermore, it does 

not deal with unicast issues and assumes no mobility and no constraints on bandwidth or transceiver resources. 
Although in a later paper [15] the authors discuss an extension of BIP addressing bandwidth and transceiver 

limitations, there still remains ample room for improvement.  
There are also numerous algorithms for ad-hoc networks that concentrate solely on the network layer. 

These can be categorized into table driven – where each node maintains routing information to every other node 

in the network and exchanges information when the state of the network changes – and on-demand routing 
algorithms where routing tables are created only when needed. The former category includes: dynamic 

destination-sequenced distance-vector routing; wireless routing protocol; global state routing; fisheye state 

routing; hierarchical state routing; zone-based hierarchical link state routing protocol; and clusterhead gateway 

switch routing. The later category includes on-demand routing protocols; cluster based routing; ad hoc on-
demand distance vector routing; dynamic source routing; temporally ordered routing; associativity based routing 

and signal stability routing. 
 

III.        SWARM INTELLIGENCE 
Swarm intelligence appears in biological swarms of certain social insect species. Flocking or group 

behavior gives rise to complex and often intelligent behavior through simple direct or indirect interaction of 
thousands of autonomous swarm members. The end result is emergence of very complex forms of social 
behavior and fulfillment of a number of very complex tasks [1].  
This emergent intelligent behavior derives primarily from two principles: self-organization and stigmergy. From 
a very abstract perspective self-organization relies on four basic ingredients:  
1. Positive feedback constitutes the basis for creation of intelligent structures (morphogenesis).   
2. Negative feedback counterbalances positive feedback and helps stabilize the collective.   
3. Amplification of random fluctuations. Randomness is crucial to discovery of new solutions (time-varying 
optimization) that in turn may result in network robustness.   
4. Interaction among multiple agents. Usually agents utilize results of their own activities as well as others.   
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Stigmergy, or indirect communication through the   
environment, is the other primary principle behind swarm intelligence. This principle may be synthesized in 
many real engineering systems, in particular wireline and wireless communications.  
One form of stigmergy alters the environment in such a manner so as to promote further similar action by the 

agents. This process is dubbed task-related stigmergy. An example is laying of sand grains by termites when 
constructing nests. In the initial stages of construction, termites lay sand grains at random locations. This 

stimulates further laying by other members of the swarm, until a single heap of sand grains randomly reaches a 

critical mass that is larger than its neighboring heaps. At that point, most termites are attracted to that specific 
heap, thereby selecting that site for construction of their nest.  
Swarm intelligence boasts a number of advantages due to the use of mobile agents and stigmergy. These are:  
1. Scalability: Population of the agents can be adapted according to the problem size. Scalability is also 

promoted by local and distributed agent interactions.   
2. Fault tolerance: Swarm intelligent processes do not rely on a centralized control mechanism. Therefore the 
loss of a few agents does not result in catastrophic failure, but rather leads to graceful, scalable degradation.   
3. Adaptation: Agents can change, die or reproduce, according to system changes.   
4. Autonomy: Little or no human supervision is required.   
5. Parallelism: Agent’s operations are inherently parallel.   
These properties make swarm intelligence very attractive for ad-hoc wireless networks. They also render swarm 
intelligence suitable for a variety of other applications, apart from routing, including robotics [16-19] and 
optimization [20,2]. 
A. Swarm Routing  

The first routing algorithm based on swarm intelligence, known as Ant-based Control (ABC), was 

introduced by Schoonderwoerd et al [3], and was followed by AntNet, proposed first by Di Caro and Dorigo 
[7,8,10], and many others [9,11,12,21]. The basic difference between swarm-based algorithms and current 
routing schemes is the use of stochastic exploration for new route discovery in swarm based techniques. This 
stochastic property is achieved by using routing tables which assign probabilities to next-hops, and special 

agents that follow a next-hop based on these probabilities. Regular data packets, however, always follow the 
next-hop with the highest probability. A sample routing table is given in Table I, where each row corresponds to 
a destination and each column to neighbors of the node, with probabilities assigned to them. 

TABLE I 

SWARM-BASED ROUTING TABLE  
Next Hop 

Destinatio

n  

 B C  

E 0.45 0.55  

  F 0.75 0.25  
 

Special exploration agents, dubbed “ants”, who collect traveling time information as they traverse the 
network, determine the probabilities of the routing table. The ants go through the same queues as regular data 

packets, so that the travel-time information they collect is a valid estimate for data packet travel times as well.  
There are two approaches to updating the routing tables. In ABC, the routing tables are updated as the ants move 
from node to destination. In contrast, AntNet uses two classes of agents: forward ants and backward ants. Once 

it reaches its destination each forward ant bequeaths the traveling time information to a backward ant, which 
updates the routing tables as it traces the path of the forward ant in reverse. The advantage of this approach is 

that routing tables are updated only when an ant is successful in reaching a destination, while in ABC ants that 
might never reach a destination can update routing tables.  
The principles of these algorithms are similar to reinforcement learning. This is better explained in Fig. 2, where 

the trip-times are the raw reinforcement which is processed by the critic to produce an intermediate quantity r’, 
which, in turn, updates the routing tables. 
 

 
Fig. 2. Actor-Critic System 
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Swarm-based routing algorithms have so far been developed only for wired networks. They have not 
been thoroughly tested, nor does a proof for their convergence exist yet. However, preliminary simulations for 

AntNet [8] show that it outperforms all conventional algorithms, including OSPF, the internet standard. 
 
B. Preliminary Results  

To illustrate performance, AntNet, the most successful swarm routing procedure thus far demonstrated  
was implemented on NS2, the standard research platform for network simulation. A simple 5-node wireline 

network (Fig. 3), was used as the demonstration testbed. For comparison purposes we also implemented the 

Distance Vector (DV) and Link-State (LS) algorithms [13]. The network considered had two sources of 500 

kbps data rate at nodes 0 and 3, where the destination of source 0 is destination 4 and the destination of source 3 

is destination 0. The capacity of all the links is 1 Mbps, and all links have a propagation delay of 10 ms, except 

for links 0-2, 2-3, 1-4 which have a delay of 40 ms. Link 0-1 failures occurs at time 7.5s of the simulation and 

the link recovers at 8.5s.  
The test for AntNet was to see if (a) it could correctly identify the optimal path while the network is 

stationary (until time 7.5 s) and (b) when a link fails, whether it would adapt to find the next best path. It was 

shown that AntNet, indeed, is adept at dynamically adjusting to these changes, and for this small network, 
performs comparably if not better than DV and LS algorithms in terms of average delay and percentage of 

packets lost.  

 

Fig. 3. Test Network 
 

We expect that as the network grows in size, and more severe disruptions are inserted in its paths, 

AntNet will indeed perform considerably better than DV and LS. AntNet’s distinguishing features such as 
scalability and robustness will demonstrate themselves much better under more realistic scenarios, rather then 

the proof of principle type network considered here as a first step. 
 
C. Swarm Routing for Wireless Networks  

Existing swarm-based algorithms have been developed for wired networks and have several features 
unsuitable for mobile ad hoc networks. 
1. Energy 

The reinforcement signal used for wired networks is the trip-time from the current node to the 

destination. This could be unsuitable for wireless networks, where energy is typically an important measure of 

network performance. It is thus necessary for a successful routing mechanism to be able to distribute traffic 

according to energy reserves of the current and downstream nodes. For this purpose, the routing tables shown in 

Table I should be modified, so that either  
(a) for each destination the probabilities correspond to complete paths instead of next-hops and are affected by 
the energy reserves of all the nodes of the path (Table II) or (b) the probabilities correspond to next-hops, while 
also reflecting the energy reserves of the remaining nodes to reach a destination. In both (a) and (b), data packets 
should still always choose the option with the highest probability. 
 
TABLE II 

MODIFIED SWARM-BASED ROUTING TABLE  
  Path   

Destinatio

n 

 ABE ACE  

E 0.45 0.55  

 F 0.75 0.25  
 

Another issue affecting energy consumption is the dispatch rate of the ants, which, if left uncontrolled, 
can become a source of significant energy drain. The rate of dispatch of ants from each node should be adjusted 

according to the traffic going through that node. The rate should increase if the node serves significant traffic 

and vice versa. 
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2. Broadcasting and Connectivity 
Wireless networks possess the broadcast advantage, where one transmission by a node can reach all 

the nodes in its range, assuming use of omni-directional antennas and an isotropic environment. This property 

can be used both in unicast and multicast scenarios by adjusting the transmission power of the sending node, 

thus affecting the network connectivity. An interesting unicast approach would be to form the routing table of 
each node so that it includes all the nodes that can be reached when transmitting with maximum power. In 

addition, the probabilities should reflect the transmission power to the next-hop. For example, in Table III, the 

amount of time and energy required to reach node E is the same from all next-hops, but nodes B and C can be 
reached with the same transmitting power while node D requires more, thus its probability of being chosen as 

next-hop is smaller. This should only apply to ants, while data packets will still choose the next-hop with the 

highest probability. 
 
TABLE III 

MODIFIED SWARM-BASED ROUTING TABLE  
  Next-Hop   

Destinatio

n 

 B C D  

E 0.4 0.4 0.2  

 F 0.65 0.2 0.15  

 
For the multicast scenario, adjustments need to be made to the update of the routing tables and the 

generation of the backward ants. The ants now have more than one node to visit. Thus, for the multicast tree to 
be optimal, a backward ant cannot be dispatched before all the destinations have been visited. Furthermore, the 

reinforcement signal should not be the remaining trip-time to a single destination, but, rather, should be the 

remaining time to reach all destinations.  
The above modifications are currently being incorporated into a new swarm based routing algorithm for wireless 
networks. 
 

IV. OPTIMAL TRANSMITTER POWER AND DATA RATE FOR NETWORK 

COMMUNICATIONS 

In this section we consider another problem of interest to satellite and sensor networks, namely 

optimization of transmit power and data rate with a given bit-error rate threshold.  
The relationship between the signal power at the receiver due to the transmitter (PR), and the transmitter power 
(PT) is given by 

P  KFP r −η , (1) 

R T   

Where K is a proportionality constant accounting for transmitter/receiver antenna gains and other 
factors, F is the channel fading factor, PT is the transmitter power, r is the distance between the transmitter and 

the receiver, and η is the channel power loss exponent.  
It can be shown that the actual Bit energy to noise ratio (BENR) at the receiver, Eact, is given by 

   

P / D W 

K.F.P .r−η   
   T   

Eac
t  

 R 
 

 

 

 

(2) 

 

N0  (PI /W ) 

 

WN0 

 

   D   
Where the second equality follows from using Eq. (1), W is the bandwidth in Hertz, and D is the data 

rate in bits per second. Let Ydes be the minimum acceptable BENR at the receiver. When Eact > Ydes the transmit 
power may be decreased (to conserve power) or the data rate may be increased (to increase throughput, and 
ultimately save power as well). Given that the transmitter acquires an estimate of excess BENR (Eact – Ydes) from 
the receiver, the data rate or power may be adjusted to achieve optimal power control. We define optimal power 
control to accomplish one of the following while minimizing Eact – Ydes and maintaining Eact > Ydes at the same 
time: 
1. Maximize the data rate that may be transmitted while maximizing the battery life (the life of the network     
        node).   
2. Minimize the power required to transmit a block of data in a given time.  

To accomplish either one of these goals requires optimization constrained upon the nonlinear charging 
and discharging curves of power storage devices (batteries). These curves generally change during the lifetime 

of the power storage device. This necessitates an optimization algorithm that operates over the lifetime of the 

network node. Furthermore, even though from Eq. (2) it is clear that transmit power and data rate trade linearly, 

assuming the additive white Gaussian noise channel, it is generally desirable to change the data rate rather than 
transmit power due to the physical constraints of the transmit power amplifier (these amplifiers are generally 
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designed for a specific efficient region of operation or output power).   
The tradeoff between power and data rate in the case of multipath or fading multipath (frequency 

selective and non-frequency selective) channels, often incurred in wireless communication networks is 
frequently nonlinear. Finding the optimum data rate and transmit power corresponds to the point in the data 

rate/power plane that minimizes Eact – Ydes while maintaining Eact > Ydes. The optimization may also be extended 
to include the nonlinear charging and discharging cycles of batteries. Such an optimization could be done using 

exhaustive search. However, particle swarm optimization routines or other biologically inspired optimization 
methods (genetic algorithms) promise far more computationally efficient solutions. In addition, they offer the 

ability to optimize highly dynamic systems (real-time optimization) with input parameter variations that would 
be prohibitive to incorporate in an exhaustive search, rule-based, or look-up table optimization. In particular the 

investigation of distributed resource allocation in biological swarms is a key component in developing 
algorithms for such optimization and holds promise for extension to multiple sensor power/data rate 

optimization. Applications for such technologies include maximizing the life of a sensor network or cluster of 
sensors. 
 

V.      CONCLUSION 

In this paper we have presented a brief description and simple performance analysis of swarm-based 
algorithms for network routing, and proposed significant modifications to them to render them suitable for ad-

hoc wireless networks. We have also formulated the problem for computing the optimal transmitter power and 
data rate for satellite to ground communication. Several optimization tools are being considered for solving this 

problem in real-time. 
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