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Abstract:- In this paper a two unit cold standby repairable system with two monotone processes exposing to
exponential failure law, is studied under the assumption that each component after repair is not as good as new.
Under this assumption we study an optimal replacement policy N in which we replace the system when the
number of failures of component 1 reaches N. We determine an optimal repair replacement policy N* such that
the long run average lose is minimized. We derive an explicit expression of the long-run average lose and the
corresponding optimal replacement policy can be determined analytically. Numerical results are also established
to highlight the theoretical results.
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l. INTRODUCTION

In the earlier days , most repair replacement models assume that a failure system after repair will yield
a function system which is “as good as new” and the repair times are neglected, so that the successive operating
times forms a renewal process. These types of models may be called as perfect repair models.

Barlow and Hunter introduced [1] a minimal repair model in which a minimal repair does not change the age
of the system. Thereafter an imperfect repair model was developed by Brown and Proschan [3] under which a
repair with probability ‘p’ as perfect repair and with probability ‘1-p’ as minimal repair. Many others worked in
this direction and developed corresponding optimal replacement polices by Black et.al [2], Park [10], Kijima
[6], McCall [9], Nakagawa [11] ,Stadje and Zukerman [13] and so on.

In general, for a deteriorating system, it is reasonable to assume that the successive working times are
stochastically decreasing while the consecutive repair times after failures are stochastically increasing, due to
the ageing and accumulated wearing many systems. To model such simple repairable deteriorating system
Lam [7,8] first introduced a geometric process repair model under the assumptions that the system after repair is
not ‘as good as new.” Under these assumptions, he considered two kinds of replacement polices -one based on
the working age T of the system and other based on the number of failures N of the system. Later Zhang [15]
developed a bivariate replacement policy (T, N) to generalize Lam’s work. Other replacement policies under
geometric process repair model were reported by Stadje and Zuckerman [13], Stanley [14], Zhang [16] ,Zhang
and Wang [17,18] , and so on.

All these research works discussed above are related to one component repairable system. However, in
many practical applications, the standby techniques are usually used for improving the reliability or raising the
availability of the system. Zhang [16] applied the geometric process repair model to a single cold standby
repairable system with one repairman and studied a replacement policy N and corresponding optimal

replacement policy N "is determined such that the long-run-average cost per unit time is minimum. Later,
Zhang [17] applied the geometric process repair model to a two unit cold standby repairable system with one
repairman and studied a replacement policy N.

Braun et.al [4] studied some important properties of monotone processes and proved that alpha series
processes is more appropriate to model the up times. On this understanding, in this chapter we have proposed to
develop two monotone processes maintenance model and obtained an optimal replacement policy N.

The objective of this chapter is to determine an optimal replacement policy N for two unit cold standby
systems with one repairman using two monotone processes exposing to Weibull failure law. It assumed that the
successive working times {X,, n=1, 2...} of a system form a decreasing a-series process while the consecutive
repair times {Y,, n=1, 2...} form an increasing geometric process. Under these assumptions we studied a

replacement policy N and corresponding optimal replacement policy N "is determined such that the long-run-
average cost per unit time is minimized.
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In modeling of these deteriorating systems we utilize definitions given in Lam [7] .

Definition 1: Given two random variables X and Y, if P(X>t) > P(Y>t) for all real t, then X is called
stochastically larger than Y or Y is stochastically less than X. This is denoted by X >4 Y or Y <4 X
respectively.

Definition 2: Assume that {Y,, n=1,2,....}, is a sequence of independent non-negative random variables. If the
distribution function of X, is F, (t) = F(a"t) for some a > 0 and all n=1,2,3,...., then {Y,, n=1,2,...,} is called a
geometric process, ‘a’ is the ratio of the geometric process.

Obviously:

if a>1,then {Y,, n=1,2,....} is stochastically decreasing, i.e, Yn >¢ Yn+1,0n=1,2,...;

if O<a<l,then {Y,, n=1,2,....} is stochastically increasing, i.e, Y, <¢ Yn+1, N=1,2,;

if a=1, then the geometric process becomes a renewal process.

Definition 3: Assume that {X,, n=1,2,....}, is a sequence of independent non-negative random variables. If the

distribution function of X, is F,(t) = F(k“t) for some & > 0 and all n=1, 2, 3... then {X,, n=1, 2...} is

called an ¢ series process, « is called exponent of the process. Braun et. al [4].
Obviously:

if a >0, then {X,,n=1,2,....} is stochastically decreasing, i.e, X, >¢ Xp+1,n=1,2,...;
if a <0,then {X,, n=1,2,....} is stochastically increasing, i.e., X, <¢ Xp+1, N=1,2,;

if o =0, then the « series process becomes a renewal process.

1. THE MODEL
In this section, we developed a model for two component cold standby repairable system with one
repairman using two monotone processes and exposing to Weibull failure law in such a way that the long-run
average cost per unit time is minimized with the following assumptions.
ASSUMPTIONS

1) At the beginning, both the components are new and component 1 is in working state while the other
component 2 is in cold standby state.

2) The two components appear alternatively in the system. i.e., when the working component fails
immediately the standby component begins to work and the failed one is repaired by the repairman.
Whenever the repair of the failed one is completed, it becomes cold standby. If one fails and the other
is still under repair, it must wait for repair and the system breaks down.

3) A component in the system is replaced some time by an identical one and the replacement time is
negligible.

4) The components after repair are not ‘as good as new’. The time interval between the completion of the
(n-1)™ repair and the completion of the n" repair on component i is called n™ cycle of component i for
i=1,2and n=1.2,....

5) A component in the system can’t produce the working reward during cold standby and no cost is
incurred during the waiting period for repair.

6) Let eri)and Yrsi) , for i=1, 2 and n=1, 2 ...are all S-independent.
7 Let X rfi) be working time follow decreasing a-series processes exposing to Weidbull failure law and

Yn(i) be the repair time follow an increasing geometric processes exposing to Weibull failure law of
component i inthe n" cycle , for i=1, 2 andn=1, 2, .... .
8 LetE(X")=2and E(Y,")= g, fori=1,2.

9)  Let F(k" x) =Fy(x) and G(b"™* y)=G,(y) be the distribution functions of Xr(]i) and Yn(i) respectively for

i=1,2 and n=1,2,3,... where o0 and 0<b<1.

10)  Let the repair cost rate of each component is C,, the working reward per unit time of each component is
Cy and the replacement cost of the system is C.
In the next section, we find an optimal solution for policy N based on the assumptions of the model and
determine an optimal solution for N such that the long-run average cost is minimum.

1. OPTIMAL SOLUTION
We consider an optimal replacement policy N under which the number of failures of component 1
reaches N. According to the assumptions of the model, two components appear alternatively in the system.
When the number of failures of component 1 reaches N, component 2 may be in the repair state of the (N-1)"
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cycle or in the cold standby state in the N™ cycle. Naturally, a reasonable replacement policy N should be that
component 1 can’t be repaired any more when the number of its failures reaches N and component 2 works until
failure in the N" cycle.

According to the renewal reward theorem (see Ross [12]), the long-run average cost per unit time of
the system under policy N is given by:
The expected cost incurred in a renewal cycle

C(N)= (3.1)
The expected length of renewal cycle
Where the length of a system in a renewal cycle under policy N is:
N N-1 N N-1
— ) ) ) 0] @ _y@® ()
L= Z X'+ ZYk +Z(Yk—1 - Xy )l{Y<z>_x(1>>0} +Z(Xk Y, )I{x(2>_v<1>>o} Xy
k=1 k=l k=2 e k=1 Lo
(3.2)

where the first, second, third, fourth and the fifth terms refers to working age, repair time, waiting for
repair time, standby time of component 1 and working age of component 2 in the N™ cycle respectively. The
total time duration when the component 1 is in cold standby is called standby time.
The expected length of a renewal cycle is

N N-1 N
EL)= D E (X )+ S E(K)+ S E 002Xy
=1 =1 =2

N-1
+2 E |:(XI£2) _Yk(l)) I{Yk(z)xlgl)>o}:|+ E(XIEJZ))
k=1

Where | is the indicator function, such that

| 1 if event A occurs
A 0 if event A does't occurs.

According to the assumptions of the model, convolution and Jacobian transformations, the probability density
function of Y& — X and X? —Y,® are respectively.

(3.3)

g(u)=Tf(v,u+v)dv,

0

Where X” =v, Y =u+v, suchthat u=Y? -xX®, (3.4)
and
g(v) =I f (u+v,u)du, (3.5)
0
where X% =u+v; Y® =u suchthat v=X® -Y®. (3.6)
Therefore, by definition of mathematical expectation we have:
E[Yk(_zl) -X® I{Yg_xg)>o}}='|.u.g(u)du. (3.7)
0
E [Xk(z) -Y® l{xs>_vK<1>>oJ = Ivg (V)dv . (3.8)
0

Now the expected length of working time can be obtained as follows:
Let X" ~W (x:n,p,), for k=123,.., and i=12.

Then the distribution function of lei) , for k=1,2,3,....and i=1,2is:

k% x

T

(=]
F.(x)=F(k*x)=1-e ;Xx>0,8,<1,7>0 (3.9
By definition the expected length of working time is given by:
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E(XS)):L xdF(kax), i=12. .10
1
7711“[1+J
L A A here /1:;711"(1+1} i=12. (3.11)
K k B

The expected length of repair time of component 1 can be obtained as follows:
Let Yk(') ~W (y:n,,/,) then the distribution function of Yk(') fori=1,2,and k=1,2,3, ....,1is

a1y

upl

[ ]ﬂz
F(y)=F@""y)=1-e y>0,5,<1. (3.12)

By definition, the expected length of repair time is is given by:

E(Y")= [[ydr@y) =12

1
7721"(1+ J
4, p 1 _ (3.13)
= "z/_ 2 here u=n,I11+— | =12.
a =] W H=1,10 1+ 5, !

The expected length of waiting time for repair can be computed as follows:
Let g(u) be the probability density function of U =Yk(fl) - XS), then by definition of probability density
function and using Jacobian transformation

we have:

g(u)=Tf(v,u+v)dv,

where XY =v, Y& =u+v, suchthat u=Y% -Xx®. (3.14)
Since Xéi) and Yk(i) are all independent, for i=1,2 and k=1,2,3,.....,n.
g(u) =[ f(v).f (U+V)dv. (3.15)
0
From equations (3.14) and (3.15),we have:
/jl
v —{MJ k-2 \/2 k-2 b
gu)=[|—| A% " (aj /32(U+v)/’”e—[a (“”)] dv- (3.16)
0 ’71 772 772
On simplification, equation (3.16) becomes:
1 1
g(u) = _j ,Bzzﬂ2 er * 7, Z>0 p,<l. (3.17)
m,
Let E [Yk(_zl’ -X® l{v,gzg_xgm}} = Iug(u)du (3.18)
0
:ju( J B,Z% et ™/ du.
0 75

On simplification, equation (3.18) becomes:
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1
| 1+ —
b [ ﬂz}_ H

(2) (Y] —
E {Yk*l — Xy I{Y,ﬁ%}—x,ﬁl)m}} - <2 ~ b2 (3.19)
1

Where g =n,I"| 1+ — |.
B,

Similarly, the expected length of cold standby time can be computed as follows:

2
E [xé )y {X(Kz)_wo}} = [vgwyav. (3.20)
0

Where g(V) be the probability density function (p.d.f) of v =X —Y,® By definition of p.d.f and using
Jacobean Transformation, we have:

g(v) =I f (u-+v,u)du. (3.21)
0
where X? =u+v, Y® =u such thatv= X" -Y.0. (3.22)
Since lei) and Yk“) , for i=1, 2 are all independent and form a geometric process,
g(v) = j f (u+v).f (u)du. (3.23)
0
Using equations (3.22) and (3.23), we have:
a
N & {k" (u+v)} ANy B By
ol k S k-2 k-2
A a o — a “u
g(v) =J' — | Bu+v)let (—J B’ 1e—(—} du (3.24)
0 771 2 772
On simplification, equation (3.24) becomes:
K B (k“z]
g(v) = ( j pZ% et ™/ Z>0, g, <1 (3.25)
Ui

From equations (3.8) and (3.25), we have:

E[XP Y0100 g | = YOIV
0

- B _[k"Z ]ﬂl
I ( - ) L. ZP7e V) dv,
(o] 1

7711“[1+1] 226
:7ﬂlzi’ where A =n,I 1+i, i=12." (3.26)
k“ k“ B
From equations (3.11), (3.13), (3.19), and (3.26), equation (3.3) becomes:
N ﬂ, N-1 N N-1
Y]
E(L)=X 0+ + Tt (3.27)
kz=:‘k b Z;, & TN

Using the equations (3.1) and (3.27) ,we have:
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CrE[Nl(Yk(l’ 172 )}C —C,E [i(xﬁ“ + X )}

C(N)=—Ltk o=
(N) EL)
N-1 N-1
2C, b‘kﬁl -2C,, Ij;w

C(N) = N1 < N k:rifl N

D B J S I I

N* &b i=b i k® Tk

2C | -2C. |
C(N)= Cl, +€-2C,}, (5.28)
2(1, +1,)

This is the long-run average cost function under policy N.

N-1 N Z
Where |, :ZL l, =

k-1 a
i b a K

1 1
A=nl|1+= |, =n,C|1+=|.
& (%] He (%]

Using C (N) we determined an optimal replacement policy N* such that the long-run average cost per unit time
is minimum.
In the next section, we provide numerical work to highlight the theoretical results

V. NUMERICAL RESULTS AND CONCLUSIONS
V.

For given hypothetical values of the parameters o, b, Cw, C, Cr, A, u, the optimal replacement policy
N* is calculated from an explicit expression in equation (5.3.28) such that the long-run average cost is minimum

Table: 5.4.1: Values of long-run average cost per unit of time

For given hypothetical values of | For given hypothetical values of
a =0.25,b=0.8 a=0.35,b =0.8
A =15, = 25,Cr=50 A =15, = 25,Cr=50
Cw=25,C=5000 Cw=25,C=5000
(N) C(N) C(N)
1 84.375 84.375
2 58.15365 59.51042
3 45.52993 47.06602
4 41.57305 43.17404
5 40.31524 41.92263
6 40.18813 41.76148
7 40.59775 42.10754
8 41.26899 42.69403
9 42.05759 43.38355
10 42.88194 44.10028
11 43.69413 44.80111
12 44.46598 45.4617
13 45.18158 46.06917
14 45.83303 46.61778
15 46.41766 47.10639
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i)
i)

[1].
[2].
[3].
[4].
[5].
[6].
[71.
[8].

16 46.93626 47.53674
17 47.39187 47.91227
18 47.78887 48.23744
19 48.13235 48.51712
20 48.42769 48.75631
21 48.68029 48.95982
22 48.89529 49.13223
23 49.07752 49.27771
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V1. CONCLUSIONS

From the table 4.1 and graph 4.1, we observe that C (6)= 40.18813 is the minimum of the long run
average cost leading to the optimal policy N* = 6, which indicates we should replace the system at the
end of 6" failure.

We observed that the long run average cost per unit time is decreases as the value of b is increases and
vice versa in case of the value of a.

It is observed that for a small increase in ‘b’ , there is an increase in N* and a decrease in average
long-run cost per unit time. Similarl conclusion can be drawn in case of the parameter a.

At different values of the parameters of the model considered the value of long-run average cost per
unit time is converges to a constant value. This result is coinciding with theoretical result.
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