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Abstract:- In this paper, we develop a methodology  for  designing   lower-error and   Area efficient 2’s-

complement fixed-width multiplier. In these multipliers basic multiplications follow the Baugh-Wooley 

algorithms and have been implemented using Field Programmable Gate Array (FPGA) devices. The approach is 

based on the fact that the multiplication operations used in multimedia applications (such as DSP) usually have 

the special fixed-width property i.e., their input data and output product have the same bit width.  For some 

practical DSP applications, we only require n-bit multiplication output, which is to be obtained by directly 

truncating the n least-significant bits and preserving the n most significant bits. However, significant errors are 

introduced in the fixed-width operation, which are undesirable for DSP applications By properly choosing the 

generalized index and binary thresholding, we derive a better error-compensation bias to reduce the truncation 

error. The proposed fixed width low error multiplier shows better error performance as compared to other 

existing multiplier structures.  
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I.   INTRODUCTION 
Multiplication is an important operation in many algorithms used in scientific computations such as 

Digital Signal Processing (DSP). The computational complexities of algorithms used in Digital Signal 

Processors (DSPs) have gradually increased over the years. Therefore, DSP’s require fast and efficient parallel 

multipliers for general purpose as well as application specific architectures. In these multipliers the basic 

multiplication follows the Baugh Wooley multiplier. The multipliers based on the Baugh–Wooley algorithm 

produce 2n-bit output with n-bit multiplier and n-bit multiplicand input. The DSP applications require extensive 

use of multiplication and squaring functions. A full width digital n × n multiplier computes the 2n output as a 

weighted sum of partial products. If the product is truncated to n-bits, the least-significant columns of the 

product matrix contribute little to the final result. To take advantage of this, truncated multipliers do not form all 

of the least-significant columns in the partial-product matrix. By eliminating more columns the area and power 

consumption of the arithmetic unit are significantly reduced and the delay also decreases. For some practical 

applications, we only require n-bit multiplication output, which is to be obtained by directly truncating the n 

least-significant bits and preserving the n most significant bits. However, significant errors are introduced in the 

fixed-width operation, which are undesirable for DSP applications [1].   

To reduce the introduced truncation error, [2] proposed an analytical technique to generate a correction 

term. The main drawback of this design is the correction bias added to offset.  The error due to truncation is a 

constant term and does not depend on the inputs being fed to the multiplier. [3] Proposed the fixed multiplier 

with a constant correction technique, which introduces a degree of flexibility in the number of columns that are 

truncated. This gives designers a chance to choose between area savings and better error correction. However, 

there exist two problems 1) how to choose proper indices. 2) Whether other lower error multipliers exist or not.  

The work in this paper proposes the general methodology for designing the lower error 2’s-complement fixed-

width multiplier with w ≥ 1. 

The rest of the paper is organized as follows: section 2 discusses the Baugh Wooley multiplier, section 

3 gives details of the proposed algorithm, section 4 presents the results and section 5 provides the conclusion 

and references are listed in the end. 

 

II.      BAUGH WOOLEY MULTIPLICATION 
      The Baugh wooley multiplication algorithm is an efficient way to handle  the sign bits. This technique 

has been developed to design regular multipliers, suited for 2’s compliment mumbers.[1]  

LET US CONSIDER Considering 2’s complement integer operands, a n-bit multiplicand X and a n-bit multiplier Y 

can, respectively be represented by 
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Where , {0,1}i ix y                                                                                                                                                                                   

The standard   product PStandard can be written as 
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(A)  Fixed Width Multiplication 

      The multiplication based on the Baugh wooley algorithm produce 2n bit output with     n bit multiplier 

and n bit multiplicand input. However in DSP applications only n bit multiplication output is needed. Therefore 

the  fixed width multiplier is obtained by truncating the least significant partial products. And preserving the 

most significant partial products as shown in figure 1. 

                                                           
Fig.1:  Partial product array diagram for an  n × n  Baugh-Wooley multiplier. 

 

 The most accurate fixed width product is theoretically given as 

                                                   2
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Where temp an ideal error-compensation term  called true rounding approach and it is infeasible to 

implement the truncated fixed-width multiplier without using any acceptable approximation. From equation (5), 
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it is observed that temp is mainly affected by 
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 due to the largest weight. Now, let us 

assume the main error compensation term Emain and remaining error compensation term Eremain [2, 3].  

Therefore,  
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The equation (2) can be rewritten as  

                                                       
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Note that temp varies as the input bits xi’s or yi’s alternates.  

Next we first define a generalized index, index,w, where w means to keep n+w  most significant columns of the 

sub-product array as shown in Figure 1 [4], and the binary parameters    1 2 0, ,..., 0,1n w n wq q q     . 
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    The operator 
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(10)                                                                                                                                                                      

To introduce the generalized index into the error compensation bias equation we rewrite equation 8 as                                                        

                                          , ,

1

2
Q w main remain Q wE E

temp
  

 
     

    

                                                                                                                                                                          (11)  

 where  index 
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Where Q has a range varying from 0 to 2
n-1

+1. 

 

III.        PROPOSED FIXED WIDTH MULTIPLIERS WITH W  1 
The lower truncation error can be obtained if larger most significant columns are kept in hardware, 

however at the cost of area. Equation (8) can be rewritten as 
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In equation (12), the first term in the bracket is referred to as coarse-adjustment term and the second term [K] is 

referred to as fine-adjustment term. The coarse adjustment term can be easily realized by a simple circuit using 

AND, OR logic, while the index is decided. On the other hand, the value of the fine-adjustment term can be 

obtained by the expected value in rounding operation after analyzing the statistics [5]. 

For designing simple and realizable error-compensation circuit, we define two types of binary thresholds for 

bias estimation. Both types of binary thresholding of  are described as follows: 
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Where K1, K2, K3, K4 are average values of K for satisfying index = 0, index >0, index >n, index = n respectively. 

The restriction on the value of K can be limited as    1 10,1,2 1,2w w

iK     for i = 1, 2, 3 and 4.[6, 7]. 

By doing simulations we obtained the values K at different generalized indexes as shown in figure 2. 

we simulate the value of K  for smaller word length  while for large word lengths  the value of K is determined 

by statistical analysis because at large word lengths we are not able to simulate the value of K due to high 

computational load.  

 
Fig. 2:  Values of K  versus different values  Q of the Binary thresholding for n=6 

 

(A )Statistical Analysis: 

For bias estimation , we assume  Type 2 binary thresholding,, which is defined in equation (15). After 

analyzing equation (15), two cases can be taken into consideration. 

 

CASE 1 

12 1n n  
  

 

From (13), we have 



Design Methodology for Low Error Fixed Width Adaptive Multiplier 

13 

 
1 1 3 3 1 1

2
2 2 4 4 4 8 2

main

n
E E n
   

         
   

                                                     

Where  

 
1

4
i jE x y   and   

 
3

4
i jE x y    

  Further 

   2 3

1 1 1 1 1 1
1 2 ... 1

2 4 2 2 2 8 4
remain n

n
E E n n
   

           
   

  

  

The generalized index is 

1 2 1 2 12 1
1

, 1

n n n i j mainQ
i j n
i j n

x y x y x y E    
  
 

      

   3K E K      

   
2 1 1 2

1 1

2 2
n n main remainE x y x y E E 

  
     

  
 

   
3 3 1 1

1
4 4 8 2 8 4

n n 
        

                                                       (16)        

            

CASE 2  

12 1n n  
  

 

This condition is met when  

2 1 1 2 1n nx y x y     

and 

 2 1 1 2... 1n nx y x y     

Also  

   2 3 1

1 1 1 1 1 1 1 1 1
1 2 3 1 2 4 .. 1 2 1 1

2 2 3 2 3 2 3 2 9
remain n n

E E n n


         
                       

         
        

               
1 5

2 3
n    if n  4   

Therefore, 

   4 2 1 1 2

1 1
0

2 2
n n main remainK E K E x y x y E E 

  
           

  
                          (17)  

 

Thus from equations (16), (17) and (15), we can derive a new error compensation bias as. 

2 1

, 1 2 1 1 2

1
...

2

n wq q

tempQ w n w n w w
x y x y  

              if  12 1n n  
                                                 

            

   

      
2 1

2 1 1 2... 0n wq q

n w n wx y x y 

             if   12 1n n  
                                                (18) 

  



Design Methodology for Low Error Fixed Width Adaptive Multiplier 

14 

Therefore, this constant approximation for  can be mapped to the structure as shown in figure 3(a) 

for n=8 [8], where A, ND, HA, and FA denote AND gate, NAND gate, a half adder and a full adder, 

respectively. The logic diagrams of AOR, ANOR, AHA, AFA, and NFA is shown in figure 3(b)  

 
(a) 

 
(b) 

Fig.3: (a) Proposed low-error fixed-width 8 x 8 Baugh Wooley multiplier with 12 1, 1nQ w
   

, and (b) Logical 

Elements. 

 

IV.    RESULTS 
The figure 4 shows the comparison between Booth and Baugh Wooley multiplication technique in 

terms of delay and we conclude that Baugh Wooley algorithm is the efficient one. The table1 shows the error 

performance of different fixed width multipliers. The   Table 2 gives the comparison of standard and fixed width 

multiplier in terms of number of occupied slices and delay. 

 
Fig. 4:  Comparison between Booth and Baugh Wooley algorithms in terms of delay. 
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                   Table 1: Comparison results of error among different fixed width Baugh Wooley multipliers. 

 

 

 

 

 

 

 

 

 

 

        

 Table 2: Comparison results of Area and delay among different Baugh Wooley multipliers n=8 

 

 

 

 

 

 

 

 

 

IV.      CONCLUSIONS 
By properly choosing the generalized index and binary thresholding, we derive a better error-

compensation bias to reduce the truncation error and then construct a lower error fixed-width multiplier, which 

is area-efficient for VLSI realization. Moreover, a number of low error fixed width multipliers are generated, the 

only constraint is to choose the right value of the index which would need exhaustive search. 
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