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Abstract:- In this work,  forced convection heat  t ransfer  inside a  channel  o f 

rectangular  sec tion,  containing some rectangular  baffle  p lates ,  is  numerica lly  

analyzed.  We have developed a  numer ica l  model based on a fini te -volume method ,  

and we have so lved the coupling pressure -veloci ty by the SIMPLE a lgori thm [6] .  We 

show the  e ffects o f  var ious  parameters o f the baff les,  such as,  baf f le ’s he ight ,  

loca tion and number on the i sotherms,  s tream l ines,  tempera tures distr ibutions and  

loca l  Nusse lt  number  va lues.  I t  i s  concluded tha t:    I )  The  baff les loca tion and he ight  

has a  meaningful  e ffec t  on i sotherms,  streamlines and  to ta l  hea t  t ransfer  through the  

channel .  ( I I )  The heat  t ransfer  enhances  wi t h increas ing bo th baff le ’s  height  and  

number.  
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I. INTRODUCTION 
  In recent  years,  a  large  number o f exper imental  and numerical  works  were  

per formed on turbulent  forced convect i on in heat  exchangers wi th di fferent  type of  

baff les [1 -4] .  This  interes t  i s  due to  the var ious industr ial  appl icat ions  of  this type  

of configurat ion such as  cooling of nuclear  power plants and aircraf t  engine . . .  e tc .  

S.  .  V Patankar  and  EM Sparrow [1]  ha ve appl ied a  numer ica l  solution procedure in  

order  to  treat  the problem of f luid  flo w and heat  t ransfer  in ful ly developed heat  

exchangers.  These one was equipped by iso thermal plate  p laced transversely to  the  

direc t ion of  flo w. They found tha t  the f low f i e ld  i s  character ized  by s trong 

recircula t ion zones caused by so lid  pla tes.  They concluded that  the Nussel t  number  

depends strongly on the Reynolds number,  and  i t  i s  higher  in the case o f ful ly  

developed  then tha t  o f laminar  flo w regime.  

  Demar tini  et  a l  [ 2]  conducted numer ica l  and  experimenta l  stud ies o f  turbulent  

f low ins ide a  rec tangular  channel  conta ining two rectangular  baff les.  The numerical  

result s  were in good agreement wi th those obta ined by experiment.  They no ted that  

the baff les p lay an impor tant  role  in the dynamic  exchangers studied.  Indeed,  

regions o f high pressure  'rec irculat ion regions '  a re  formed near ly to  chicanes .  

 Recent ly,  Nasiruddin and Sidd iqui  [3]  s tudied numerical ly e ffects of baff les on 

forced convection f low in a  heat  exchanger .  The  effects o f s ize and incl ina tion angle  

of baff les  were de ta i led .  They considered three di fferent  arrangements o f baffles .  

They found that  increas ing the s ize o f the ver t ical  baffle  substantial ly improves the 

Nusse lt  number .  Ho wever ,  the pressure loss i s  a l so impor tant .  For  the case o f 

incl ined baff les,  they found tha t  the Nusselt  number  is  maximum for  angles of  

incl ina tion d irected do wnstream of  the  baff le ,  with a  minimum of  pressure loss.      

 More recent ly,  Sa im e t  al  [4]  presented a numerical  study of t he dynamic behavior  

of turbulent  air  flo w in hor izonta l  channel  with transverse  baff les.  They adapted  

numerical  f ini te  volume method based on the SIMPLE a lgori thm and chose  
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  model  fo r  treatment o f turbulence.  Resul t s  obtained for  a  case o f such type,  a t  

low Reynolds number,  were presented in te rms of ve loci ty and temperature f ields.  

They found the exis tence of rela t ively strong recircula t ion zones near  the baffles .  

The eddy zones a re responsib le o f  local  var iat ions in the Nusse lt s  numbers along the  

baff les and wal ls .  

We kno w that  the pr imary heat  exchanger  goal  is  to  e ff ic ient ly transfer  heat  

from one f luid  to  ano ther  separa ted,  in most  pract ical  cases,  by so lid  wal l .  To 

increase heat  t ransfer ,  severa l  approaches have  been proposed.  We can c i te  the 

spec i fic  treatment o f so lid  separa t ion sur face ( roughness,  tube winding,  vibrat ion,  

etc . ) .  This  transfer  can also be  improved by creation of longi tudina l  vort ices  in  the  

channel .  These eddies are produced by introducing one or  more transverse barr ier s  

(baffle  plates)  ins ide the channel .  The formation of these vort ices downstream of  

baff les causes recirculat ion zones capable o f rap id and eff icient  heat  t ransfer  

between sol id  wal ls  a nd f luid  f low. I t  i s  this  approach that  we wi l l  fol lo w in this  

study.  Indeed,  we are interested in this work on the numerical  model ing of dynamic  

and thermal behavior  o f  turbulent  forced convection in hor izontal  channel  where two 

wal ls  are raised  to  a  high  temperature.  This  channel  may contain  one or  severa l  

rectangular  baff les.  

 A spec ia l  inte rest  i s  given to  the influence of di fferent  parameters,  such as height ,  

number  and baffle  posit ions on heat  t ransfer  and  f luid  f lo w.  

 

II. MATHEMATICAL FORMULATION 
  The geometry of the p roblem is shown schematica l ly in Figure 1 .  I t  i s  a  

rectangular  duc t  wi th isothermal hor izonta l  wal ls ,  crossed  by a  sta t ionary turbulen t  

f low. The physica l  propert ies  are  considered to  be constants.   

 
Figure 1:  The studied channel  

 

   At each point  o f the f low the ve loc ity has  components (u,  v)  in  the  x and  y 

direc t ions,  and the temperature i s  denoted T .  The turbulence model ing i s  handled by 

the c lass ical  model (k - ) .  k is  the turbulent  kinet ic  energy and     the  viscous  

diss ipat ion of turbul ence.  

      The Transpor t  equat ions (continuity,  momentum, temperature,  turbulent  

kinet ic  energy and d iss ipat ion of turbulence)  governing the sys tem,  are wr it ten in  

the fo l lo wing genera l  fo rm   :  
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   Where  ρ is  the densi ty  of  the  fluid  passing 

through the channel  and  ɸ,  F φ  and Sφ  are  given by:  
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G t  µ and µ t   represent ,  respec tively,  

the dynamic and turbulent  viscosit ies.  
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The constants used in the turbule nce model (k -Ɛ)  Are those adopted by 

Chieng and Launder  (1980)  [8]    :  

C  1C  2C  T  k    

0 ,09  1,44  1,92  0,9  1  1 ,3  

 

Boundary condit ions   :  

At the channel  inle t :  

inUu   ; 0v  and inTT    

2/32 1,0005,0 kandUk in    

At sol id  wal ls : 

0 vu  ; 0k  inw TTTand   

At the channel  exit s:   

The gradient  o f any quanti ty,  wi th respec t  to  the longitud ina l  direc t ion x is  

nul .  

   Our  goal  is  to  determine veloc ity and temperature f ields,  as well  as the  

turbulence parameters.  Par t icular  a t tent ion i s  given to  the quant i ficat ion parameters  

ref lect ing hea t  exc hanges such as the Nussel t  number  ( local  and average) .  

 

III. NUMERICAL FORMULATION 
 The computer  code that  we have  developed  i s  based on the  fini te  volume  

method.  Computat ional  domain i s  d ivided  into  a  number  o f s t i tches.  To choose the  

number of cel l s  used in  t his s tudy,  we per formed several  simula tions on a channel  

(wi th or  wi thout baffles) .  F inal ly,  we have op ted for  a  210 ×  90 meshes .  

The mesh d imensions  are var iab les;  they t ighten a t  the sol id  walls  

ne ighborhoods.  Consequently,  the s t i tch density i s  higher  near  the hot  wal ls  and  

baff les.  

We consider  a  mesh having dimensions  ∆x and ∆y.  In the middle o f  each 

volume we consider  the  points P ,  ca l led centers o f control  vo lumes.  E ,  W, N,  S are  
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the centers o f the  adjacent  contro l  vo lumes.  We also consider  centers,  EE; WW, NN,  

SS.  The faces o f each cont rol  vo lume are denoted e,  w,  n,  s .  

 
Figure 2:  Mesh with P at  center  

 
By integrat ing the transport  equation  (1)  o f ɸ on the contro l  volume ,  we find,  

a  relat ion to  the  x direct ion:  
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S  is  the source term.  

One no te  uF  ,  the convect ion f low and   xD  / ,  the  di ffus ion 

coefficient .  And  wi th taking    :  
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P

WPwPEewwee

S

DDFF







 )()(
 To est imate  ɸ on the  faces  "    e    "  

and   "    w   "  we opted for  the c lassical  quick scheme [5]  which i s  a  quadrat ic  forms  

using three nodes.  The choice o f these nodes i s  dictated by the direc t ion of f low on 

these faces )00(  uoru .  

 Fina lly,  the  transpor t  equation (1)  i s  d iscre t ized on the mesh wi th P  at  center  as    :  
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The same thing i s  done  for  the  ver t ical  "y"  direct ion,  using the  faces "n"  and  

"s"  and by introducing the Quick diagram nodes  N,  NN, S and SS.  

i f  convection flo w and  di ffusion coefficient  o f  the  sides   "e" ,   "w" ,  "s" ,  "n"  are  

kno wn And espec ia l ly the source term  
P

S ,  the solution of equation (2)  t hen gives  

us the va lues of ɸ in  di fferent  P  nodes .  

One notes that  to  acce lerate  the convergence of equation (2)  we have introduced a 

relaxat ion fac tor    :  

  )3(
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 Where 
0

P  is  the va lue of   P  in the  

previous step .  

  The source term appears especia l ly in the  conservat ion of momentum 

equat ions in the fo rm of a  pressure gradient  which i s  in pr inc iple unkno wn .  To get  

around  this coupling we have  chosen to  use in our  code the  "Simple"  algori thm 

developed  by Pantankar  [7] .  The bas ic  idea  of this algor i thm is to  assume a f ie ld  o f  

ini t ia l  pressure  and inject  i t  in to  the equat ions o f conserva tion of  momentum.  Then 

we solve the sys tem to f ind a f ield  o f intermediate  speed (which i s  not  fa ir  because  

the pressure isn t . )  The continuity equat ion i s  t ransformed into  a  pressure correct ion 

equat ion.  This las t  i s  de termined to  find a    pressure correc tion that  wi l l  injec t  a  

new pressure in the equations o f motion.  The cycle i s  repeated as  many t imes as  

necessary unti l  a  pressure  correct ion equal  "zero"  corresponding to  the  a lgori thm 

convergence.  In the end we solve the transport  equations o f  T ,  k and  Ɛ.  

      In this approach,  a  problem is encountered .  I t  is  known as the checkerboard 

problem.  

The r i sk i s  that  a  pressure field  can be highly d isturbed by the sensed  

formula tion which comprises per forming a l inear  interpolat ion for  es t imate the 

pressure value on the facets o f the cont rol  volume.  To circumvent this  problem we  

use the  so -ca lled  s taggered gr ids  proposed by Har low and Welch  [6] .  In thi s  

technique,  a  f ir st  gr id  p ressure (and other  scalar  quanti t ies T ,  k and Ɛ ) is  p laced in 

the center  o f the con trol  vo lume.  While o ther  staggered gr ids are adopted for  the  

ve loc ity components  u and v ( see Figure 3) .  

 
Figure 3:  Shi fted mesh  

 

The sca lar  var iables,  including pressure,  are  stored a t  the nodes  (I ,  J ) .  Each 

node (I ,  J )  i s  sur rounded by nodes E,  W, S and  N.  The horizonta l  velocity component  

u i s  sto red on faces "e"  and  "w",  whi le  the ver t ica l  component  v is  stored on the  

faces denoted "n"  and "s" .  

So the control  vo lume for  pressure and o ther  scalar  quant i t ies T ,  k and  Ɛ is   

 ),();1,();1,1();,1( jijijiji    
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For component u  cont rol  vo lume is  

  ),1();1,1();1,();,( jIjIjIjI  .   

Whi le  for  the v component we use :  )1,1();,();,1();1,1(  JiJiJiJi .  

By integra t ing the  conservat ion momentum equation in  the  horizontal  direc t ion on 

the volume  ),1();1,1();1,();,( jIjIjIjI  ,  we found    :  
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The coefficients  anb are  

determined by the  quick scheme ment ioned above.  

Simi lar ly,  the integrat ion of  conservat ion mo mentum equat ion in the ver t ical  

direc t ion on the  volume  

  )1,1();,();,1();1,1(  JiJiJiJi ,  gives us    :  
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  One considers pr imar i ly  an ini t ia l  pressure field  P
*
.  The provisional  so lution  

of the equat ions (4)  and  (5)  wi l l  be denoted u
*
 and v

*
.  We note that  u
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 and v
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checks the continuity equati on,  and:  
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At this stage any one of the three var iables i s  correct .  They require  correction    :  
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At this leve l ,  an approximation i s  in troduced.  In order  to  l inear ize the  

equat ions  (8) ,  the terms  nbnbua '  and nbnbva '   are  s imply neglected .  

Normally these terms must  cancel  a t  the procedure convergence .  That  i s  to  

say that  this  omission does not  a ffec t  the f ina l  result .    Ho wever ,  the convergence  

rate  is  changed by this simpl i ficat ion.  I t  turns out  that  the correct ion  P '  i s  

overest imated by the    Simple algor i thm and  the  ca lculat ion tends to  diverge.  The  

remedy to  s tab il ize  the  calculat ions i s  to  use a  re laxa tion fac tor .  

  We Note that  a  fur ther  trea tment of these te rms i s  proposed in the so -cal led 

algori thms "SIMPLER" and  "SIMPLEC"  [7] .  

The equations (8)  become:  

  )9(),('),1('' , aJIPJIPdu JiJi   
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Equat ions  (9)  give the  correc tions to  app ly on veloc it ies through the formulas  

(7) .  We have therefore    :  
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Now the discret ized contin ui ty equat ion on the control  vo lume of scalar  quanti t ies i s  

wr i t ten as fol lows    :  
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Where an are the s ize o f  the corresponding faces .  

The introduction of  the  veloc ity correct ion equations (10)  in  the  continui ty  

equat ion gives a  fina l  equat ion al lowing us to  de termine the  scope  of  pressure  

correc tions P:  
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The a lgori thm can be  summarized  as fo l lows    :  one  sta r t s  fro m an ini t ial  

f ield
**** ,, andvuP ,  wi th     represents  the sca lar  quan ti t ies  T, k and Ɛ.  Then the  

sys tem (6)  is  so lved to  have new values o f ** vandu .  

Then the sys tem (11)  i s  solved for  the correc tions f ield  pressure P '.  

Thereaf ter ,  pressure and  veloc ity are  corrected by equat ions (7)  and (10)  to  have P ,  

u and v.  
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We solve the fo l lo wing transport  equation of sca lar  quanti t ies (2) ,   ɸ =  T, K 

and Ɛ .    

Finally,  we  consider :  

  **** ;;; vvuuPP .  

And the cyc le i s  repeated unti l  convergence.  

 

IV.  RESULTS AND DISCUSSIONS 
The dimensions o f the channel  presented in this work are based on 

experimental  data published by Demart ini  et  a l  [2] .  The air  flo w is carr ied out  under  

the fo l lo wing condi t ions .  

   Channel  length:  𝐿  = 0 .554 m ;  

   Channel  diameter  D = 0.146  𝑚 ;  

   baffle  he ight  :  0  <ℎ  <0 1.  𝑚 ;  

    baff le  thickness:  δ  =  0 .01  𝑚    ;  

    Reynolds number : 𝑅𝑒  = 8 .73 10
4  

;   

 The hydrodynamic and thermal  boundary condit ions are given by    :  

At the channel  inle t :               

          inuu  =7,8m/s;  

0v  ; inTT  =300 K 

On the channel  walls:  

0 vu  and KTT w 373  

At the channel  exit  the sys tem is assumed to  be ful ly developed,  ie    :  

0









x

T
x

v
x

u  

Fir s t ,  we compared the  s truc ture o f  streamlines and i so therms in a  channel  

wi thout baff le  wi th those ob ta ined when we int roduce baffle  having a height  h =  

0.05 m (Case 2 -1)  a t  the  absc ise  𝐿 1  = 0 .218  𝑚 .  Indeed,  in figures 4  and 5 we present  

streamlines and i so therms for  two configurat ions.  

These result s  c lear ly show the impor tance of p resence of  baff le  (act ing as a  

cooling f in) .  Indeed the baff le  increases heat  t ransfer  between the wal l  an d the  

f luid .  This increase is  caused by rec irculat ion zones do wnstream of the baff le .  

 
(a) 

 
(b)  

Figure 4:  s t reamlines:  (a )  case 1 ;    (b)  case 2 -1  

 
(a) 

 
(b) 

Figure 5:  Iso therms: (a)  case 1 ;    (b)  case  2 -1  
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We then s tudied the inf luence of baff le  he ight  on flo w s tructure and  hea t  

t ransfer .  We chose the heights (h  = 0 .05 m;  cases 2 -1)    h = 0 ,  073  𝑚  (Case 2 -2)  and h 

= 0,  1  𝑚  (case 2 -3) .  

The figures 6  and 7  present  streamlines  and i sotherms  for  a  channel  containing baff le  

wi th  di fferent  he ights .  

 
(a)  

 
(b) 

Figure 6:  streamlines :  (a )  case 2 -2 ;  (b)  case 2 -3  

 
(a)  

 
(b)  

Figure 7:  Iso therms:  (a)  case 2 -2;  (b)  case 2 -3  

 

  I t  is  c lear  that  the i sotherms are more condensed near  baff le ,  as and when the  

he ight  h increases.  This ind icates  an increase o f  heat  t ransfer  near  baffle .  Indeed,  the  

increase in h expanded exchange area be tween f luid  and walls .  In add it ion,  when h 

increases ,  the recircula t ion zone  beco mes increas ingly impor tant  ( see  Figures  4  (b)  

and  figures  6  (a)  and (b)) .  This causes an acce lerat ion of f low,  which improves  hea t  

t ransfer  wi thin the channel .  

We present  figures  8  and 9  in order  to  iden t i fy the influence of  h on 

ve loc it ies and temperature p rofi les a long y at  x = 0 .45 from channel  inlet .  Four  

va lues o f h  are considered.    

 

Figure 8:  Hor izontal  velocity  Profi les along y at  x =  0.45 « inf luence of h  » 

 

 
Figure 9:  Temperature  p rof i les along  y at x = 0.45 m « inf luence of h  » 
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These resul ts  al low us  to  conclude that  the increase o f baffle  he ight  has two 

contrad ic tory effects.  I t  is  t rue  tha t  there i s  substant ial  increase in heat  exchange 

(appearance  of recircula t ion zones most  co mmon),  but  the re is  a lso  a  loss o f  pressure  

( f low b lockage) .  

In the purpose of measur ing the influence of 'h '  on loca l  heat  t ransfer ,  we  

have presented in figure  10,  the local  Nusse lt  number  a long the  channel  for  the four  

cases o f h considered.  I t  sho ws tha t  upstream of  the baff le  (x  <0.2 m) curves are  

confused    ,  whi le ,  just  af ter  baffle  locat ion,  effec t  o f baff le  he ight  on Nussel t  

number  beco me increas ingly impor tant  away from the baffles .  

0

50

100

150

0 0.2 0.4 0.6

Nu Cas 21

Nu Cas 22

 
Figure 10  :   Local  number Nu along the channel  « inf luence of  h  » 

 

 We then s tudied the inf luence  of baff les number and posi t ion 'F igure 11 and 12 '.  

 
(a)  

 
(b)  

 
(c)  

Figure 11  :  S treamlines  : (a)   cas 3 -1;  (b)  cas 3 -2;  (c)  cas 3 -3  

 

We consider  two baffles  of same height  h = 0.08 m.  The fir s t  baff le  i s  pl aced  

at  the distance  𝐿1  =  0 .15  𝑚 ,  whi le  the second is  posi t ioned at  the d istance d  1  = 0 .05  

m from the f irs t  (case 3  -1) ,  d  1  = 0 .10 m (case 3  -2)  and d  1  = 0 .15 m (case 3  -3) .  We 

note the existence  of two rec irculat ion zones  downstream of the f ir st  baff le .  Also  the 

f irs t  recircula t ion zone 'defined by baffles '  becomes increas ingly important ,  which 

contr ibute to  an increase in heat  t ransfer  in this  area,  as sho wn in Figure 12.  Indeed,  

when the baff les are c lose to  each o ther  'd 1  small ' ,  the fluid  i s  blocked in the  

chimney del imi ted by x = L 1  and x = L1  + d 1 .  This reduces the f low speed at  tha t  
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loca tion and thus there wi l l  be a  decrease in the heat  t ransfer  in this a rea.  Or when  

d 1  increases,  the f luid  has suff ic ient  space to  move rap idly,  hence  hea t  t ransfer  

increases  in this  zone 'see figure15 ' .  

 
(a) 

 
(b)  

 
(c) 

Figure 12  :  Iso therms  

 

(a)  :  « cas 3 -1 » ;  (b)  :  « cas 3 -2 » ;  (c)  « cas 3 -3  » 

In the fol lo wing figures 13 and 14,  we compare the profi le  o f hor izonta l  

ve loc ity and tempera ture dis tr ibution.  Calculat ion i s  done on t he y-axis at  x = 0 .45 

m from the channel  inlet  for  three di fferent  baff les spac ing.  We find that  more  

spac ing i s  impor tant  more heat  exchange i s  impor tant  in areas l imi ted by two 

baff les.   

 
Figure 13  :Prof i les  o f the horizonta l  ve loc ity a t  x = 0.45 m « Influence of the 

spac ing be tween two baff les »   

  
Figure 14:   Prof i les o f  the total  tempera ture at  x  = 0.45 m  « Inf luence of  the spacing 

between two baffles  »  
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  Figure 15 present  the  loca l  Nusse lt  number  along the channel  fo r  three  

considered spacing  d  1  =  0 .05m, 0 .1m   and 0 .15m.  

 
Figure 15 :Local  Nusse l t  number  along the channel  « Influence  of baff les number 

and  posit ion  » 

 

We dist ingue two areas    :   

The fir s t  def ined by 0 <x <0.3m whi le  the second by x> 0.3m.  For  the fir st  

region,  an increase in nu mber of baffles improves the hea t  t ransfer ;  whereas the 

reverse is  t rue  for  the second  zone.  

We chooses to  show the inf luence of  baff les number on hea t  t ransfer  along 

the channel  for  three cases :  Channel  wi thout  baff les,  channel  containing a  s ingle  

baff le  and channel  conta ining two baffles  'Figure 16 '.  

I t  should be noted tha t  genera l ly,  hea t  t ransfer  i s  proport iona l  to  baff les  

number.  Indeed,  the Nussel t  number  character izing hea t  t ransfer  wi thin the channel  

increases  wi th increasing baffles number.   

 
Figure 16:   Local  Nusse lt  number  a long the channel  

 

V.  CONCLUSION 
The thermal behavior  o f  a  stat ionary turbulent  forced convection f low wi thin 

a  baff led channel  was  ana lyzed .  The result s  show the ab il i ty o f  our  code to  predict  

dynamic and thermal f ields in var iou s geometr ic  si tuat ions.  We stud ied mainly the  

inf luence of  baff les he ight  and spac ing on heat  t ransfer  and f luid  f low. One can 

conclude  tha t:  

1  -  Increase  in the baffle  he ight  improves heat  t ransfer  between channel  wall s  

and  fluid  passing through i t ;  

2  -  Heat  t ransfer  becomes increasingly impor tant  wi th adding baffles .  

3  -  The spacing d 1  be tween baff les has di fferent  e ffec ts on loca l  heat  

t ransfer .  Any t ime  d 1  has no t  a  lo t  of inf luence on the overal l  hea t  t ransfer  in the  

channel .    

In perspec tive ,  we  inten d deepen and c lar i fy our  result s .  Indeed,  we wi l l  adapt  our  

code to  others geometr ic  cases  (non -rec tangular  baffles  or  baffles  inc lined) .  Fina lly,  

we  wi l l  a l so try to  re fine more the turbulence model .   
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