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Abstract:- The present problem has been solved by taking phonon Green`s function . Zubarev equation of 

motion technique of quantum dynamics has been applied to find Fourier transformed phonon Green` function. 

Phonon linewidth has been obtained from this method responsible for Raman Tensor. The expression for Raman 

Tensor has been separated into diagonal and non-diagonal parts. The development of different orders of Raman 

scattering and their peak intensities have been discussed in low temperature limit in presence of isotopic 

impurity in low concentration.  
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I. INTRODUCTION 
The work on Raman scattering is being continued according to different materials [1]-[3]. Most 

commonly semiconductor devices have been available for daily uses of this universe. The basic physics in 

developing the technology is to consider electron and phonon as a carrier in semiconductor crystals. Raman 

scattering by phonons in a crystal is the inelastic scattering of light caused by the fluctuations in the crystal 

electronic polarizability induced by the displacements of the atoms from their equilibrium positions [4].  In ideal 

crystal, normal mode of vibrations having exact eigen state. The localized mode has been formed due to lack of 

harmonicity in presence of impurity. An interaction of electron with harmonic and localized fields gives the 

formation of dynamical body. We have to investigate the Raman Tensor under this approach by taking into 

consideration harmonic Hamiltonian, electron Hamiltonian, electron phonon interaction Hamiltonian and defect 

Hamiltonian. The work has been done on Raman scattering in impurity-induced anharmonic crystals [5] but in 

present case of semiconductor crystal electron phonon interaction in presence of isotopic impurity in low 

temperature limit is taken into consideration to get a different result. The phonon Green`s function is taken to 

develop the complete characteristics about Raman spectra. Theory of Raman scattering is established by 

dividing the paper into following sections. 

 

II. FORMULATION OF THE PROBLEM 

Raman Tensor  Ri  ,  is given by [5]-[7]                
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In above eq.(1) ,  tPTRR  ,,,, 00   are respectively frequency of incident 

radiation , Raman shift , frequency of scattered light , time ordering , electronic polarizability of the crystal . The 

electronic polarizability for N cells can be expanded in a Taylor series which is dependent on the normal 

coordinates  tkjU ,  of the crystal in the form as [5], [6]  
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In eq.(2) , first term , second term and third term represent Rayleigh scattering , first-order Raman 

scattering (FORS) , second-order Raman scattering (SORS) and so on respectively . 

An eq.(1), with the help of eq.(2) followed by second quantized normal coordinate transformation gives [5] 
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 are due to fluctuations in the first-order electronic polarizability , second-

order electronic  polarizability and third- order electronic polarizability respectively. 

In our present situation, impurity and electron phonon interaction are taken in semiconductor crystal. It 

is convenient to take only fluctuations in first-order electronic polarizability to achieve our aim. Thus, in this 

case, Raman Tensor  Ri 
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 is given as 
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This correlation function    0`
1

`
111 jkjk AtA  may be obtained with the help of [8] as 
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Thus, our aim is to find imaginary part of Fourier transformed phonon Green`s function   iG R  .  

 

III. PHONON LINEWIDTH AND PHONON SHIFT 
Let us take the following Hamiltonian according to different fields created in semiconductor crystal as 

[9]-[18] 
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The various terms in above Hamiltonian eq.(6) are given by 
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opH  , oeH  , DH  , epH  are harmonic part , electron part , defect part and electron phonon interaction part of 

Hamiltonian respectively . The symbols of eqs.(7a-7d) are explained in references [9]-[18] .   

To achieve our goal, let us consider phonon Green`s function      ``
`` ;, tAtAttG
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
 [19]  .The 

Fourier transformed phonon Green`s function  `kk
G  can be obtained by equation of motion technique of 

quantum dynamics via eqs.(7a-7d) [5],[16]-[20] and Dyson equation approach as 
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k  ,  ,kq  , k
~

 ,  ,kq  are respectively denote perturbed mode frequency , phonon half linewidth , 

renormalized mode frequency and phonon shift . The renormalized mode frequency k
~
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Where, 
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This method gives response function  ,kqP  as 
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The response function  ,kqP  gives the phonon linewidth  ,kq  and phonon shift  ,kq  through 

following relation as 
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Let us evaluate again Fourier transformed phonon Green`s function with the help of equation of motion 

technique of quantum dynamics by differentiating it twice with respect to t with the help of Hamiltonian eq.(6) 

as [5],[16]-[20] 
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In low impurity concentration, kqQ nNN ~,,  are evaluated with the help of Green’s function eq.(18) 
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In this theoretical approach, eq.(17b) gets a new form with the help of above eqs.(20a-20c) as 

              2221, 242`

qkqqkqqkqkq

ep EEkqkJBAkqkQLTgTgkqQ    

              2321, 242``

qkqQkqQkQkQ

ep EEkqkJBAkqkQLTgTgkqQ    

Where, 

           aDDCCkkqkJ kqkkqkkqkkqkqkkB 24~8
22`1 


   

     22`2`2224
22`2`2`21 ~8~28~~~64 qkkkqkkQkkQk

q

kB AkkqkQL  


   

          bDDCC kqkkqkkqkkqkkq 24~16
4`4

   

 

IV. RAMAN TENSOR  
Raman Tensor eq. (4) can be solved by substituting imaginary part of Phonon Green`s function eq. (8) 

in it through eq.(5) as  
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The Raman Tensor  Ri 
1

,
 obtained from this work gives the information about intensity of Raman 

scattering per unit solid angle through the following equation as [5],[6]   

       292 ,

,

34

0

 



 EEinncI RR  

 

V. CONCLUSIONS 
The present Green`s function approach provide the different orders of Raman scattering. The 

renormalized mode, two exciton bound state are the excitations produced in defect part and in electron phonon 

interaction part respectively. Raman Tensor is separated in the form of diagonal and non-diagonal parts. These 

are dependent on defect part and electron phonon interaction part. The first order Raman scattering (FORS) and 

second order Raman scattering (SORS) are found to produce by renormalized mode in defect part and exciton 

bound state by two successive FORS in electron phonon interaction part respectively. The creation of two 

exciton bound state gives the formation of stoke lines in electron phonon interaction field. In FORS both stoke 

and antistoke lines are generated by creating and annihilating renormalized mode frequency respectively. It is 

also found from theory that these orders depend on temperature as T in defect part, T
2
 and T

4
 in electron phonon 

interaction part. Raman Tensor reflects the intensity through excitations produced in scattering processes. In the 

limit, renormalized  mode and  the two exciton  bound  state are  identical with  perturbed  mode  frequency,  the

Raman peaks of first and second orders become sharp.In addition to this, asymptotic nature of intensity of peaks

in second order may also be occur when 
`~

k
`` ~,~

Qq  ; kqk  2~ `
 ; 

`~2 kqk   , qk  2  

`~,~
Qq   .  

The peaks are due to defect term is not only found to be temperature dependent but still influenced by 

electron phonon interaction through renormalized mode frequency. This work tends to defect dependent part of 

work of reference [5] when we take only harmonic and defect terms in Hamiltonian. In very low impurity 

concentration, diagonal part contributes to Raman scattering in comparison to non-diagonal part. This theory 

concludes that in absence of impurity, electron phonon interaction plays prominent role to give Raman spectra. 

The intensity of peaks in SORS depends as g
2
 and g

6
 on electron phonon coupling constant. This shows that the 

temperature variation T
4
 strongly couple electron and phonon in comparison to T

2
 dependence.  The temperature 

dependence of Raman spectra can also be seen in reference [22]. 
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