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Abstract:- alternating direction explicit and alternating direction implicit methods (ADE and ADI)  were used 

to solve Schnackenberg model, we were found that alternating direction implicit method is much more accurate 

and faster than alternating direction explicit in this kind of models.  
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I. INTRODUCTION 
Reaction-diffusion (RD) systems arise frequently in the study of chemical and biological phenomena 

and are naturally modeled by parabolic partial differential equations (PDEs). The dynamics of RD systems has 

been the subject of intense research activity over the past decades. The reason is that RD system exhibit very 

rich dynamic behavior including periodic and quasi-periodic solutions [6].  

Various orders are self-organized far from the chemical equilibrium. The theoretical procedures and 

notions to describe the dynamics of patterns formation have been developed for the last three decades [4].  

Attempts have also been made to understand morphological orders in biology [5]. Clarification of the 

mechanisms of the formation of orders and the relationship among them has been one of the fundamental 

problems in non-equilibrium statistical physics [3].  

 

I.I. MATHEMATICAL MODEL 
A general class of nonlinear-diffusion system is in the form 

 
With homogenous Dirchlet or Neumann boundary condition on a bounded domain Ω , n≤3, with 

locally Lipschitz continuous boundary. It is well known that reaction and diffusion of chemical or biochemical 

species can produce a variety of spatial patterns. This class of reaction diffusion systems includes some 

significant pattern formation equations arising from the modeling of kinetics of chemical or biochemical 

reactions and from the biological pattern formation theory. 

 

Schnackenberg model: 

 
where k, a and b are positive constants. 

Then one obtains the following system of two nonlinearly coupled reaction-diffusion equations (the 

Schnakenberg model), 

 
Where  are positive constants [8].  Various finite difference algorithms or schemes 

have been presented for the solution of hyperbolic-parabolic problem or its simpler derivatives, such as the 

classical diffusion equation. It is well-known that many of these schemes are partially unsatisfactory due to the 

formation of oscillations and numerical diffusion within the solution [1, 7].  

Solution by the finite difference method, although more general, will involve stability and convergence 

problems, may require special handling of boundary conditions, and may require large computer storage and 

execution time. The problem of numerical dispersion for finite difference solutions is also difficult to overcome 

[2].   
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II.  MATERIALS AND METHODS 

II.1. Derivation of alternating direction explicit (ADE) for schnackenberg model:  

The two dimensional Schnakenberg model is given by  

 
 

We consider a square region 0≤x≤1, 0≤y≤1  and  u, v are known at all points within and on the 

boundary of the square region. We draw lines parallel to x, y, t–axis as x=ih,  y=jk, and t=nz,  i,j=0, 1, 2,…,M 

and n=0, 1, 2,…, N, where h=δx, k= δy, z= δt. 

 

The explicit finite difference approximation (ADE) to shnackenberg model in two-dimensions are given by:  

 
 

 

Multiplying both equations by  and set , then we have a rectangular region and replacing  and 

,then we get 

  
and  

 
Then simplifying the system to obtain 

 

  

This is the alternating direction explicit formula for the Schnakenberg model

 
 

II.2. Derivation of alternating direction implicit (ADI) for schnackenberg model:   

In the ADI approach, the finite difference equations are written in terms of quantities at two x levels. 

However, two different finite difference approximations are used alternately, one to advance the calculations 

from the plane  n to a plane n+1, and the second to advance the calculations from (n+1)-plane to the (n+2)-

plane by replacing   and   by implicit finite difference approximation [5].  we get 

 

 
 

  

we set , then we have a rectangular region and multiplying the equations by  and replacing  

and  , then we get 
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or  

 
and  

 

Advance the solution from the (n+1)
th

 plane to (n+2)
th

 plane by replacing  and  with explicit finite 

difference approximation at (n+1)
th

 plane then   and  by an implicit finite approximation at the (n+2)
th

 

plane  

 

 

 
 

and  

  

Multiplying the equations by   and replacing  and   when , then we have  

 
and  

 
and this implies that 

 
and  

 
Then we get two systems  

 

 
and 

 

 
 

The last two systems represent Alternating Direction implicit method under the conditions 
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The tridiagonal matrices for the system in the level n advanced to the level n+1, for both u and v can be 

formulated as follows AU=B. 
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And the tridiagonal matrices for the system in level n+1 advanced to level n+2 for both u and v are 

given by AU=B. 
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Also for AV=B the tridiagonal is in the form 
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III. APPLICATION (NUMERICAL EXAMPLE) 

Example: We solved the following example numerically to illustrate  the efficiency of the presented methods, 

suppose we have the system 

 
 

We the initial conditions  

  

  

  

     is the exact solution of the problem.  

Where a=b=0.1. 

Then the results in more details are shown in following table and figure:  
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                                      Fig. 1: Comparison of ADE, ADI with Exact solution (u). 

                                     Table 1: Comparison of  ADE and ADI with Exact solution (u). 

x ADE ADI Exact 

0.1 2.69265 2.6912344 2.6912344 

0.15 2.423622 2.27384012 2.20573840 

0.2 2.181472 2.01678803 1.8971263 

0.25 1.963516 1.8279602 1.6823796 

0.3 1.767336 1.64066 1.52614066 

0.35 1.590757 1.4899208 1.401599208 

0.4 1.431821 1.31680 1.254730168 

0.45 1.288764 1.18920286 1.14620286 

0.5 1.160001 1.0435533 1.011435533 

0.55 1.044102 0.939289 0.879392894 

0.6 0.939783 0.8454428 0.78454428 

0.65 0.845887 0.7609726 0.697609726 

0.7 0.761373 0.6849420 0.635849420 

0.75 0.685302 0.6165078 0.568960165 

0.8  0.616832  0.5549110  0.52549110 

0.85 0.5552032 0.4994686 0.44994686 

0.9 0.4997315 0.4495655 0.40495655 

0.95 0.4498021 0.4046483 0.374046483 

1 0.4048613 0.403642189 0.363642189 

 

IV. CONCLUSION 
We saw that alternating direction implicit is more accurate than alternating direction explicit method 

for solving Schnakenberg model. 
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