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Abstract:- In this paper we discuss the problem of finding the number of zeros of a polynomial in a given circle 

when the coefficients of the polynomial or their real or imaginary  parts are restricted to certain conditions. Our 

results in this direction generalize some well- known results in the theory of the distribution of zeros of 

polynomials. 
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I. INTRODUCTION AND STATEMENT OF RESULTS 
        In the literature many results have been proved on the number of zeros of a polynomial in a given circle. 

In this direction Q. G. Mohammad [6] has proved the following result: 
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K. K. Dewan [2] generalized Theorem A to polynomials with complex coefficients and proved the following 

results: 
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Theorem C: Let 
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The above results were further generalized by researchers in various ways.  

M. H. Gulzar[4,5,6] proved the following results: 

Theorem D: Let 
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Theorem E: Let 
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Theorem F: Let 
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  The aim of this paper is to find a bound for the number of zeros of P(z) in a circle of radius not 

necessarily less than 1. In  fact , we are going to prove the following results: 

Theorem 1: Let 
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Remark 1: Taking R=1 and 


1
c  in Theorem 1, it reduces to Theorem D . 

If the coefficients ja  are real i.e. jj  ,0 , then we get the following result from Theorem 1: 

Corollary 1: Let 
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Applying Theorem 1 to the polynomial –iP(z) , we get the following result: 

Theorem 2: Let 
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Taking n  in Theorem 1, we get the following result : 
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Theorem 3: Let 
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Remark 2: Taking R=1 and 


1
c  in Theorem 3, it reduces to Theorem E . 

If the coefficients ja  are real i.e. jj  ,0 , then we get the following result from Theorem 3: 

Corollary 3: Let 
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Applying Theorem 3 to the polynomial –iP(z) , we get the following result: 

Theorem 4: Let 
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Taking 1,)1(  kk n  in Corollary 3 , we get the following result: 

Corollary 4: Let 
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Theorem 5:  Let 
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         For different values of the parameters ,,k  in the above results, we get many other interesting results. 

 

II. LEMMAS 
For  the proofs of the above results we need the following results: 

Lemma 1: If f(z) is analytic in Rz  ,but not identically zero, f(0)  0 and  
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  Lemma 1 is the famous Jensen’s theorem (see page 208 of [1]). 
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Lemma 2 is a simple deduction from Lemma 1. 

Lemma 3: Let 





0

)(
j

j

j zazP  be a polynomial o f degree n with complex coefficients such that for some 

real  , , ,0,
2

arg nja j 


 and ,0,1 njaa jj   then any t>0, 

                    sin)(cos)( 111   jjjjjj aataatata . 

Lemma 3 is due to Govil and Rahman [4]. 

 

III. PROOFS OF THEOREMS 
Proof of Theorem 1: Consider the polynomial  
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Therefore , by Lemma 3, it follows that the number of zeros of F(z) and hence 
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That proves Theorem 1. 

Proof of Theorem 3: Consider the polynomial 

     F(z) =(1-z)P(z)   

            )......)(1( 01

1

1 azazazaz n

n

n

n  

  

            0011

1 )(......)( azaazaaza n

nn

n

n  


 

            
2

1210

1 )(......)( zzzaza n

nn

nn

n   


 

                   



n

j

j

jj ziz
0

10001 )()]()[(  . 

For Rz  , we have by using the hypothesis 

    0

1)( aRazF n

n  
+ RRRR n

nn

n

01

2

121 ......     

                      +
j

n

j

jj RR 



0

10 )()1(   

             011210

1 ......[   



nnn

nR  

                        



n

j

j

0

0 2)1(  ] 



On The Zeros of a Polynomial in a Given Circle 

www.ijerd.com                                                                                                                            60 | Page 

 

               ]22)([
0

000

1 


 
n

j

jnn

nR       for 1R  

and 

      



n

j

jnnRazF
0

0000 ]2)([)(                    for 1R . 

Therefore , by Lemma 2, it follows that the number of zeros of F(z) and hence 
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That proves Theorem 3. 

Proof of Theorem 5: Consider the polynomial 

     F(z) =(1-z)P(z)   
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That completes the proof of Theorem 5. 
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