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On The Zeros of a Polynomial in a Given Circle
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Abstract:- In this paper we discuss the problem of finding the number of zeros of a polynomial in a given circle
when the coefficients of the polynomial or their real or imaginary parts are restricted to certain conditions. Our
results in this direction generalize some well- known results in the theory of the distribution of zeros of
polynomials.
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l. INTRODUCTION AND STATEMENT OF RESULTS
In the literature many results have been proved on the number of zeros of a polynomial in a given circle.
In this direction Q. G. Mohammad [6] has proved the following result:

Theorem A: Let P(z) = Z a; 2! be a polynomial o f degree n such that
=0

a, =a, ;>..2a 2a,>0.

1
Then the number of zeros of P(z) in |Z| < E does not exceed

1+Lloga—“.
log2 " a,

K. K. Dewan [2] generalized Theorem A to polynomials with complex coefficients and proved the following
results:

Theorem B: Let P(2) = Z ajzj be a polynomial o f degree n such that Re(a;) = «;, Im(a;) = f;and
=0

A, 20, 220, 2, >0.

1
Then the number of zeros of P(z) in |Z| < E does not exceed

n
a, +Z‘ﬂi‘
j=0

1 |
’ log 2 o9 |a,|

Theorem C: Let P(2) = Z a; z'bea polynomial o f degree n with complex coefficients such that for some
j=0
real @, B,

‘argaj—ﬂ‘Sas%,j:O,l,Z, ...... n

and
la,|=]a, 4] >.....2[a)| =[] -

1
Then the number f zeros of P(z) in |Z| < E does not exceed
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|a,|(cosa +sine +1) + 2sin ani‘aj‘
-0

L lo
log 2 . |

The above results were further generalized by researchers in various ways.
M. H. Gulzar[4,5,6] proved the following results:

Theorem D: Let P(z) = Zajzj be a polynomial o f degree n such that Re(a;) =a;, Im(a;) = ;and
j=0
oy 20, 2.2, ke, 20, 2. >a, 2,,

for K >1,0 < 7 <1,0 < A <n. Then the number of zeros of P(z) in |Z| < 6,0 < 6 <1 does not exceed

1

log 1
o

|+, + (K =D)(a, |+ @;) + ao| - 7o + ) + 2|8
j=0

|
> 2]

Theorem E: Let P(2) = Z ajzj be a polynomial o f degree n such that Re(a;) = «;, Im(a;) = 3, and
=0
prtoa, 2o, 2.0 2T,,

for some p>0,0 <7 <1, then the number f zeros of P(z) in |Z| <0,0< 6 <1, does not exceed

. 2p+|an|+an—r(|a0|+a0)+2|a0|+22‘ﬁj‘
j=0

log 1
o

log

a,|

Theorem F: Let P(2) = Z a; Z'bea polynomial o f degree n with complex coefficients such that for some
j=0
real o, [,

‘argaj—ﬂ‘SaS%,jzo,l,Z, ...... n

and
lp+a,|=la,y]>.....>a|>1a, .

for some p >0, then the number of zeros of P(z) in |Z| <0,0< 6 <1, does not exceed

n-1
(p+|a,)Mcosa +sina +1) + 2sina ) [a;| - |a,|(cos & —sina — 1)
log =2

log 1
o

2|

The aim of this paper is to find a bound for the number of zeros of P(z) in a circle of radius not
necessarily less than 1. In fact, we are going to prove the following results:

Theorem 1: Let P(z) = Z aij be a polynomial of degree n such that Re(a;) =a;, Im(a;) = B;and
=0

2, 220, Ko, 20, 2. 2o, 210,
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R
for K >1,0 < 7 <1,0 < A < n. Then the number of zeros of P(z) in |Z| <—(R>0,c>1) does not exceed
C

R™ o, |+ a, +(k=D(a,|+a,) + 2a,| - tas| + o) + 23| 3]
j=0

1
log
logc |
for R>1
and
3|+ Rljar,| + e, + (k=) (e, | + ;) — (o] + ) +|exo| +|Bo] + ZZ‘ﬂj‘]
log =
logc |a,|

for R<1.

1
Remark 1: Taking R=1and C = g in Theorem 1, it reduces to Theorem D .

If the coefficients @ ; are real i.e. ﬁj =0, V], then we get the following result from Theorem 1:

Corollary 1: Let P(z) = Z aij be a polynomial o f degree n such that
=0

a,=za,; >...2a,,ka, >a,  >... >a, >1,,

n n-1 —

R
for k >1,0 < 7 <1,0 < A < n. Then the number of zeros of P(z) in |Z| <—(R>0,c>1) does not exceed
C

1 0g R™[|a,|+a, + (k—1)(a,|+a,) + 2a,| — 7(a,| + a,)]
logc |
for R>1
and
1 o la,|+ Rlja,| +a, + (k—-1)(a,|+a,) +|a,| - 7(ja,| + a)]
logc |
for R<1.

Applying Theorem 1 to the polynomial —iP(z) , we get the following result:

Theorem 2: Let P(z) = Z ajzj be a polynomial o f degree n such that Re(a;) =a;, Im(a;) = B;and
=0

BBy Z 2 B KB, 2 By > > B 2 1B,

R
for K >1,0 < 7 <1,0 < A < n. Then the number of zeros of P(z) in |Z| <—(R>0,c>1) does not exceed
C

RO, [+ B, + (-8, |+ £,)+ 20|~ 7] + o) + 232 |
j=0

log
logc ||
for R>1
and
@] + RIB, |+ B, + (k=D(B, |+ B,) +[Bo| +|cro| = 76| + o) + 22|z, ]
log =
logc a,|
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for R<1.
Taking A =n in Theorem 1, we get the following result :

Corollary 2: Let P(z) = z aij be a polynomial o f degree n such that Re(a;) =« ;, Im(a;) = 3, and
j=0

20 g 2 e 20, 2T,

R
for K >1,0 < 7 <1,0 < A < n. Then the number of zeros of P(z) in |Z| <—(R>0,c>1) does not exceed
C

R™ K (|et, | + ) + Qg | — 7o | + @p) + 2| ;]
j=0

log
logc |
for R>1
and
lao| + RIK (e, | + @) +a| — 7aty| + ) + 2Z\ﬁj I
log 120
logc |

for R<1.

Theorem 3: Let P(z) = Z ajzj be a polynomial o f degree n such that Re(a;) =a;, Im(a;) = ;and
=0
pra, 2o, 2..20,2T0,,

R
for some p,0 <7 <1, then the number of zeros of P(z) in |Z| <—(R>0,c>1), does not exceed
C

R“+1[|p| +p+|an| +a, —r(|a0| +a,)+ 2|a0| + ZZ‘ﬂj ‘]
j=0

log
logc ||

for R>1
and

|ag|+ RIlp| + p + o, | + @, — (|| + o) + |ao| + ZZ‘ﬁj ‘]
j—0

log
logc |a,|

for R<1.

1
Remark 2: Taking R=1and C = g in Theorem 3, it reduces to Theorem E .

If the coefficients @ ; are real i.e. ﬁj =0, V], then we get the following result from Theorem 3:

Corollary 3: Let P(z) = z aij be a polynomial o f degree n such that
i=0

p+a,>a, , >...>a >a,,
R

for some 0,0 <7 <1.Then the number of zeros of P(z) in |Z| <—(R>0,c>1), does not exceed
C

1 I0g R™ o[+ p+|a,| +a, —7(a,|+a,) + 2a]

for R>1
logc a,|
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and
L |a| + RIo| + p +a,|+a, —7(a,| +a,) +|a]
logc a,|
Applying Theorem 3 to the polynomial —iP(z) , we get the following result:

Theorem 4: Let P(z) = Z ajzj be a polynomial o f degree n such that Re(a;) =a;, Im(a;) = B;and
=0

P+ P2y 2 B 270,

R
for some p >0,0 <7 <1.Then the number of zeros of P(z) in |Z| <—(R>0,c>1), does not exceed
c

R™ o+ p+ |8, + By~ 7(Bo| + Bo) + 2| + 23
j=0

1
log
logc ||
for R>1
and
80| + RIlol + o+ |, + By = 2(Bo| + Bo) +|Bol + 2 |er ]
log 1=
logc 3|

for R<1.
Taking p = (k —1e,,k >1 in Corollary 3, we get the following result:

Corollary 4: Let P(2) = z ajZj be a polynomial o f degree n such that Re(a;) =« ;, Im(a;) = 3, and
j=0

20 2 20, 2T,

n—

R
for some 0,0 <7 <1.Then the number of zeros of P(z) in |Z| <—(R>0,c>1), does not exceed
C

R™ [k (e, | + ) = 7(|oro| + ) + Qo | + 22\@.\]
log 10

logc EN

for R>1
and

|a0| + R[k(|an| +a,) —r(|a0| +a,) +|a0| + 22‘,81- ‘]
=0

log
logc |a,|

for R<1.
Theorem 5: Let P(z) = z aij be a polynomial o f degree n such that
=0

lpt+a,|=la,y=.....2[a| = 7a|

R
for some 0,0 < 7 <1. Then the number of zeros of P(z) in |Z| <—(R>0,c>1), does not exceed
C

1 log i[R”*l{(|,o| +|a,)(cos a +sina +1) — 7ja,|(cos @ —sin o +1) + 2|a,y }]
logc ~ |a|
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for R>1
and

L log i[|a0| + R{(|p| + |a, )(cos & + sin & +1) — 7]a,|(cos & —sin @ +1) +|a,[}]
logc ~ |ay|

for R<1.
For different values of the parameters K, p, 7 in the above results, we get many other interesting results.

Il. LEMMAS
For the proofs of the above results we need the following results:

Lemma 1: If f(z) is analytic in |Z| < R ,but not identically zero, f(0) # 0 and
f(a,)=0k=12,..., n,then
1 (o i . R
— | log|f(Re"|d& —log|f (0)| = log — .
2T J.o ‘ ‘ | | 12_1: ‘aj‘
Lemma 1 is the famous Jensen’s theorem (see page 208 of [1]).

r
Lemma 2: If f(z) is analytic and | f (Z)| <M(r)in |Z| <r, then the number of zeros of f(z) in |Z| <—,c>1
C

does not exceed
LIog M(r) .
logc | (0)|

Lemma 2 is a simple deduction from Lemma 1.

Lemma 3: Let P(z) = Z ajzj be a polynomial o f degree n with complex coefficients such that for some
j=0

real @, 3, [arga, —,B‘Sasg,Os j<nand |a;|>[a; 4|0 < j<n,thenany t>0,

‘taj - aj_l‘ < (t‘aj‘ —‘aj_l‘) cosa + (t‘aj ‘ + ‘aj_l‘)sin a.

Lemma 3 is due to Govil and Rahman [4].

1. PROOFS OF THEOREMS
Proof of Theorem 1: Consider the polynomial
F(2) =(1-2)P(2)

=1-2)(a,z" +a,,2" " + .. +A,2+Q,)
=-a,2"™ +(@, —a,,)2" +.. +(a, —q,)Z + 3,

=-a,2"" +a, +(a, —a, )" + . + (@, —@,)2

[~ 7a) + (raty — )2 13 (B, — B,)2

For |Z| <R, we have by using the hypothesis
IF(2)| <|a,|R"™" +|ag| +|a, =, 4R +.....+|ay — ) |R*™ +|ker, —a, |R?

+(k=Djer, |R* +|a,y —a, ,|R*™ +. oy — 70| R+ (L= 7)|ex|R

+ ;(\ﬂj | +[84))
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<la,|R™ +|ay| + R"[a, —tp g+t oy —or, +Ka, —a, +(K—1)|, |
n-1
H O, =, F et oy — Ty + (L= T+ [ Bo| +[ B0 |+ 22‘,81‘]
-1

=|an|Rn+l +|a0| +R"[e, + (K —Dd%l +05/1)—T(|0!o| +a,) +|ao| +|,[)’0| +|ﬂn|
n-1
+zz\ﬂj\]
j=1

<R+t + (et +,) ] + ) + 2| +2X|Bf1  for R=1
j=0
and |
IF(2)] <ag| + Rller, |+ @, + (k =Dl |+ @) = 7(@o| + 5) + |ot| +[Bo| + 2D |85 ]
j=1

for R<1.
Therefore , by Lemma 3, it follows that the number of zeros of F(z) and hence

R
P(z) in |Z| <— (R >0,c > 0) does not exceed
C

R™ [la,|+a, +(k=D)(a,|+a,) + 2|~ tao|+ o) + 2 |3}
j=0

1
log
log ¢ a,|
for R>1

and

|+ Rl |+ 1, + (=Dt |+ e, ) =t + o)+t 418+ 22| |

log =

logc 2|

for R<1.
That proves Theorem 1.
Proof of Theorem 3: Consider the polynomial
F(2) =(1-2)P(2)
=1-2)(a,z" +a,,2"" +.. +a,2+a,)
n

=-a,2" +(a, —a,,)2" +.... +(a, —a,)Z + 4,

1
=-a, 2" +a,—-pt"+(p+a, -,

@ —a0) + (g — )2 +1 (B, - B, )2

For |Z| <R, we have by using the hypothesis

IF(2)| <|a,|R™ +[ag|+|AR" +|p + @, =, 4 |R" +... 4|, — | R? + |, — 7 |R
+ (L= D)oo |R+ D (8] +|B; 4R
j=0
<SR |+|ao| +|o| + o+, —aty +otay — g+ — Tty

+(1—r)|a0|+2§n:\ﬁj\]
j=0
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=R"a,|+ e, +|p|+ p —(|ao| + o) + 2, | + ZE‘ﬂj ‘] for R>1
i=0
and
n
IF(2)| < [ag| + Rl p| + p +]|en| + a — (x| + 1) + x| + ZZ‘ﬂj‘] for R<1.
j=0
Therefore , by Lemma 2, it follows that the number of zeros of F(z) and hence

R
P(z) in |Z| <—(R>0,c>0) does not exceed
C

R™ |+ p +|a,| + a, —t(|a| + ag) + 2exo| + ZZ‘ﬂj ‘]
j=0

1
log
logc ||
for R>1
and
|ag|+ RIlp| + p + o | + @, — (|| + o) + || + ZZ‘ﬁj ‘]
log 1=
logc |a,|

for R<1.
That proves Theorem 3.
Proof of Theorem 5: Consider the polynomial
F(z) =(1-2)P(2)

=1-2)(a,z" +a,,2" " + .. +A,2+a,)
=-a,2"" +(a, —a,,)2" +.... +(a, —a,)Z + 4,
=-a,z™+a,-p"+(p+a,—a,,)2" +...+(a,—a,)Z
+[(a, —73,) + (8, —ay)]z.
For |Z| <R, we have by using the hypothesis and Lemma 3
IF(2)|<|a,|R™ +|a| +|oR" +|p+a, —a,4|R" +.....+|a, —a,|R* +|a, =73y |R
+(1-7)e|R
<la,[R™ +|a,| +|AR" +[(p +a,| -|a,.)) cosa + (o +a,| +|a, ) sina]R"
+.....4+[(a,]| - |a)) cosa + (|a,| +]a ) sin 2]R? + (1 - 7)[a, |R?
+[(ay| - 7la,|) coser + (ja,| + fa, ) sin xR
<R™[(o]+[a,)(cosa +sina +1) — 7o |[(cosa —sina +1) + 2a,]
for R>1

and
<|a,|+ RI(A +|a,|)(cosa +sina +1) — z]a,|(cosa —sina +1) +|a,]
for R<1.

Hence , by Lemma 2, it follows that the number of zeros of F(z) and therefore P(z)

R
in |Z| <—(R >0, c > 0) does not exceed
C

ﬁ 09 - [R"{(|p| +|a, cos @ +sinc +1) ~ el (c0s & —sinar +1) + 2}
0

www.ijerd.com 60 | Page



On The Zeros of a Polynomial in a Given Circle

and

1
——Ilog
logc ~ |ay|

for R>1

i[|a0| + R{(|p| + |a, )(cos & + sin & +1) — 7]a,|(cos & —sin @ +1) +|a,[}]

for R<1.

That completes the proof of Theorem 5.
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