
International Journal of Engineering Research and Development 

e-ISSN: 2278-067X, p-ISSN: 2278-800X, www.ijerd.com 

Volume 9, Issue 2 (November 2013), PP. 41-52 

41 

Location of Zero-free Regions of Polynomials 

 

M. H. Gulzar 
Department of Mathematics University of Kashmir, Srinagar 190006 

 

Abstract: In this paper we locate zero-free regions of polynomials when their coefficients are restricted to 

certain conditions.  

Mathematics Subject Classification:  30C10, 30C15 

 

Keywords and phrases: Coefficient, Polynomial, Zero.  

 

I. INTRODUCTION AND STATEMENT OF RESULTS 
The problem of finding the regions containing all or some or no zero of a polynomial is very important 

in the theory of polynomials. In this connection,   a lot of papers have been published by various researchers 

(e.g. see 1,2,3,4,5,6).  Recently, M. H. Gulzar[5] proved the following results: 
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2M is same as 2M except that  4321 ,,, kkkk  are 

respectively replaced by 3412 ,,, kkkk  and 4321 ,,,   are respectively replaced by 3412 ,,,  . 
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If n is odd, then the number of zeros of P(z) in  )1,0(  cR
c

R
z  does not exceed  
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where 4M  is same as  3M  except that 21 , kk are respectively replaced by 12 , kk  and 21,  are respectively 

replaced by     2 ,  1 .   

   In this paper we find regions containing no zero of the polynomials in theorems 1,2 3 and prove the following 

results: 
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Theorem 1: Let Let 
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Then that P(z) has no zero in 
*

0

M

a
z   , for 1R  and no zero in 

**

0

M

a
z  for 1R , where 

   
*M   ])()([ 21

1

   

nnnnnn

nn

n kkRRa  

                 ])([])([ 00020001  



  RR     

  and 

                   **M ])()([ 21

1

  

nnnnnn

nn

n kkRRa  

              ])()([ 00002001    R . 

     Combining Theorem 1 and Theorem A, we get the following result: 
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If n is odd, then P(z) has no zero in 
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Combining Theorem 2 and Theorem B, we get the following result: 
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    For different values of the parameters, we get many interesting results from the above theorems. 

 

II. PROOFS OF THEOREMS 
Proof of Theorem 1: Consider the polynomial 
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This shows that F(z) has no zero in 
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z   , for 1R  and no zero in 
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Since the zeros of P(z) are also the zeros of F(z) , it follows that that P(z) has no zero in 
*

5

0

M

a
z   , for 1R  

and no zero in 
**

5

0

M

a
z  for 1R  , thereby proving Theorem 3 for even n. 

For odd n the proof is similar and is omitted. 
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