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Abstract:- In this paper, a discrete time host parasitoid model is investigated. The fixed points in the stability 

are analyzed. Two biological phenomena, the Allee effect of host population aggregation of the parasitism are 

considered in our mathematical model. The population dynamics are compressed when Allee effect is added, the 

sensitivity to the initial conditions for the host parasitoid system decreased after adding Allee effect. Finally 

various mathematical study were discussed. 

 

Keywords:- Host-Parasitoid, Allee effect, stability analysis, aggregation.  

 

I. INTRODUCTION 
Some ecological models, although simple in mathematical expression have been designed to study 

population temporal dynamics. In particular, the pioneering work in the field was initiated by May (1974, 1976) 

.The discrete time host parasitoid model which are usually described by difference equation can produce much 

richer patterns than continuous time model. In ecology host-parasitoid models can be formulated as discrete 

time models. Jing et all studied the dynamics of corresponding discrete models obtained by Euler method Jing 

etal (2004,2006).The  modification  of Bedding ton Free Lawton model of parasite host dynamics was 

investigated in  Ivanchikov and Nedorezov(2011),Elsadamy(2102) discussed dynamical complexities in a 

discrete time food chain. Dance et al.(1997) studied discrete  prey-predator model, when prey grows 

logistically..Now biological scientist have established many complex non-linear mathematical models to 

account for the dynamics behavior of the interaction (kaitala and Heno1996, kaitala et al 1999). Pable.A. 

et.al.(2013) found that alle threshold in the two dimensional system is given as the boundary of the basin of 

attraction of an attracting positive equilibrium. 

For different parameters and initial conditions we can iterate the difference equation for thousand time 

steps and analyze the time population to elucidate the regularity and mechanism that hidden behind the 

population dynamics. All these researches relied on logistic growth function to analyze the dynamics of the host 

parasitoid interaction and obtained some intriguing results. In this work, we study dynamics of host parasitoid 

model with Allee effect for the host parasitoid aggregation which natural death of parasite in the absence of host 

include.  

 

II. THE MODEL 
 We assume that growth of host population without parasitoid follows Moran-Ricker dynamics (Moran 

1950, Ricker 1954) which is given by  
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 Where  tH stands for the population size at time t,  is the intrinsic growth rate and K is the carrying capacity 

of the environment. Hau Liu (2009) discussed the dynamics of host parasitoid model with Allee effect   for the 

host and parasitoid aggregation are given by  
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 Now the model is described as in the system of host parasitoid (since natural death of the host in the 

absence of host) and is given by 
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 Where c   is the lower bound for the host and   m  can be defined as Allee effect constant, k  is clumping 

factor and  d  is death rate of the host in the absence of the host 

 Here we attempt to analyze stabilizing and destabilizing effects of allee  effect of host and clumping 

effect of parasitoid in terms of   the lower bound c the searching efficiency a, intrinsic growth rate  , and 

clumping degree k  
 

III. FIXED POINT AND LOCAL STABILITY 
 We now study the existence of fixed points  of the system  (4) and(5),particularly we are interested  in 

the interior fixed point  to begin and   we list all possible fixed points. 

         i) 0 (0,0)E  is trivial fixed point 

        ii) 1 ( , )E H P  is the interior fixed point 
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    M is  net rate of the increase in the host  per generation,                         

    Note that the equilibrium point  cannot be solved in a closed form.   

Theorem: Let 
3 2( )p B C D        be the roots of ( ) 0p   .  then the following                         

statements are true 

 a)  If every root of the equation  has absolute value less than one, then  the fixed point  of the  

       System is locally asymptotically stable and fixed point is called a sink. 

b)   If at least one of the roots of equation has absolute value greater than one then the fixed  

      point of the system is unstable and fixed point is called saddle. 

c)   If every root of the equation has absolute value greater than one then the system is a source. 

d)    The fixed point of the system is called hyperbolic if no root of the equation has absolute  

value equal to one, if  there exists a root of equation with absolute value equal to one then the  

fixed point  is called  non-hyperbolic.  

 

IV. DYNAMIC BEHAVIOR OF THE MODEL 
 In this section we investigate the local behavior of the model (4) and ,(5)  around  each fixed point. The 

local stability analysis of the model (4) and ,(5)  can be studied  by computing  the variation matrix  

corresponding to each fixed point  . The variation matrix of the model at state variable is given by  

 

 

1 1 1( 1) ( , )H t F H P   

2 2 2( 1) ( , )P t F H P 
 

 

 For which the Jacobian matrix is given by    
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Proposition 1The fixed point 0E  is locally asymptotically stable if and only if   1| | 1   

Proof: 

                   In order to prove the result we estimate the eigenvalues of the  jacobian matrix J at 0E    is      given 

by      0
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Proposition 2      The fixed point  1E  stable if satisfy the condition  1,2| | 1.   

Proof:        

  In order to prove the result   consider the matrix’    
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     The characteristic equation  is | | 0A I   
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      This may be rewritten in the form              
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      Where   B= Trace of A = 11 22G G  

                   C= |A|= 11 22 12 21. .G G G G  

  The roots of the equation (9)   are   
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 Both the Eigen values are real   for  R  and 1,2| | 1    if 
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              Which  yields         
24 4 4C B C         (10) 

           The Eigen values 1,2| | 1       become complex and are inside the unit circle( c ) in the complex plane 

for  
2 4 0B C  2 2(4 ) 4B C B    

Which yields       
2 4 4B C                                 (11) 

  If the conditions (10) and (11) are satisfied  then the positive equilibrium point   is stable.   

 

V. CONCLUSION AND DISCUSSION 
In this paper, we arrived a new discrete-time host–parasitoid model, in which both Allee effect for the 

host and aggregated parasitoid are simultaneously incorporated. Generally speaking, our model is more 

biological reasonable than some previous host–parasitoid models. Since the strong non-linearity, we can hardly 

obtain any meaningful information about the stability of the equilibrium from mathematical analysis. In 

Particular, we can gain some basic imagination about the role of Allee effect on host–parasitoid system. Now, 

we will give a short discussion based on the conclusions obtained from this study. Our first conclusion is about 

the relationship between dynamical complexity and Allee effect. First, we have to admit that the host–parasitoid 

model can exhibit many kind of complex dynamics. Therefore, Allee effect can be considered as one stabilizing 

effect to some extent.  

 

The properties of self similarity and fractal basin boundaries of the basins of attraction were found in 

many other models (Kaitala and Heino, 1996; Kaitala et al., 1999; Tang and Chen, 2002; Xu and Boyce, 2005) 

except host–parasitoid model with Allee effect. A fractal basin of attraction implies the dynamics of the host–

parasitoid system will change alternately among different attractors, when a small external perturbation is 

induced. Generally, the dynamics predicted from these mathematical models is usually very intrigued, while the 

dynamic behavior of real data is much simpler. However, our deterministic model, where Allee effect is added, 

can produce simpler dynamics. Our result, although cannot fully solve the discrepancy, can at least strengthen 

the utility of mathematical models in exploring populations. Dynamic complexities are the common 

characteristics in a variety of population models. Identifying the complex dynamics in natural population data 

has remains a major challenge in ecological studies. Our finding suggests that dynamic complexities might be 

eliminated through some balancing efforts in the nature, that is the reason why the data from the natural 

population looks simpler.We were also discussed various mathematical analysis in the concern. 
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